MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2 Structured version   Visualization version   GIF version

Theorem ltmul2 12064
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
ltmul2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))

Proof of Theorem ltmul2
StepHypRef Expression
1 ltmul1 12063 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
2 recn 11197 . . . 4 (๐ถ โˆˆ โ„ โ†’ ๐ถ โˆˆ โ„‚)
3 recn 11197 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ ๐ด โˆˆ โ„‚)
4 mulcom 11193 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
53, 4sylan 579 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
653adant2 1128 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
7 recn 11197 . . . . . . 7 (๐ต โˆˆ โ„ โ†’ ๐ต โˆˆ โ„‚)
8 mulcom 11193 . . . . . . 7 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
97, 8sylan 579 . . . . . 6 ((๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
1093adant1 1127 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
116, 10breq12d 5152 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
122, 11syl3an3 1162 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
13123adant3r 1178 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
141, 13bitrd 279 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   class class class wbr 5139  (class class class)co 7402  โ„‚cc 11105  โ„cr 11106  0cc0 11107   ยท cmul 11112   < clt 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-sub 11445  df-neg 11446
This theorem is referenced by:  ltmul12a  12069  mulgt1  12072  ltmulgt11  12073  lt2msq1  12097  ltdiv2  12099  ltmul2i  12134  ltmul2d  13059  ef01bndlem  16130  cos01gt0  16137  sin4lt0  16141  pockthg  16844  prmreclem1  16854  prmreclem5  16858  blcvx  24658  dvcvx  25897  itgulm  26285  tangtx  26381  chtub  27086  bposlem1  27158  bposlem2  27159  bposlem7  27164  lgsdilem  27198  lgsquadlem1  27254  lgsquadlem2  27255  chebbnd1lem3  27345  chto1ub  27350  pntlemb  27471  irrapxlem1  42112  irrapxlem2  42113  irrapxlem5  42116  pellexlem2  42120  stoweidlem11  45273  stoweidlem26  45288
  Copyright terms: Public domain W3C validator