| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltmul2 | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.) |
| Ref | Expression |
|---|---|
| ltmul2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1 12117 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | |
| 2 | recn 11245 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
| 3 | recn 11245 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 4 | mulcom 11241 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
| 6 | 5 | 3adant2 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
| 7 | recn 11245 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 8 | mulcom 11241 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) | |
| 9 | 7, 8 | sylan 580 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 10 | 9 | 3adant1 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 11 | 6, 10 | breq12d 5156 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |
| 12 | 2, 11 | syl3an3 1166 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |
| 13 | 12 | 3adant3r 1182 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |
| 14 | 1, 13 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 · cmul 11160 < clt 11295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-neg 11495 |
| This theorem is referenced by: ltmul12a 12123 mulgt1OLD 12126 ltmulgt11 12127 lt2msq1 12152 ltdiv2 12154 ltmul2i 12189 ltmul2d 13119 ef01bndlem 16220 cos01gt0 16227 sin4lt0 16231 pockthg 16944 prmreclem1 16954 prmreclem5 16958 blcvx 24819 dvcvx 26059 itgulm 26451 tangtx 26547 chtub 27256 bposlem1 27328 bposlem2 27329 bposlem7 27334 lgsdilem 27368 lgsquadlem1 27424 lgsquadlem2 27425 chebbnd1lem3 27515 chto1ub 27520 pntlemb 27641 irrapxlem1 42833 irrapxlem2 42834 irrapxlem5 42837 pellexlem2 42841 stoweidlem11 46026 stoweidlem26 46041 2tceilhalfelfzo1 48018 |
| Copyright terms: Public domain | W3C validator |