MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2 Structured version   Visualization version   GIF version

Theorem ltmul2 12096
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
ltmul2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))

Proof of Theorem ltmul2
StepHypRef Expression
1 ltmul1 12095 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
2 recn 11229 . . . 4 (๐ถ โˆˆ โ„ โ†’ ๐ถ โˆˆ โ„‚)
3 recn 11229 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ ๐ด โˆˆ โ„‚)
4 mulcom 11225 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
53, 4sylan 579 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
653adant2 1129 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
7 recn 11229 . . . . . . 7 (๐ต โˆˆ โ„ โ†’ ๐ต โˆˆ โ„‚)
8 mulcom 11225 . . . . . . 7 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
97, 8sylan 579 . . . . . 6 ((๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
1093adant1 1128 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
116, 10breq12d 5161 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
122, 11syl3an3 1163 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
13123adant3r 1179 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
141, 13bitrd 279 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ถ ยท ๐ด) < (๐ถ ยท ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099   class class class wbr 5148  (class class class)co 7420  โ„‚cc 11137  โ„cr 11138  0cc0 11139   ยท cmul 11144   < clt 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477  df-neg 11478
This theorem is referenced by:  ltmul12a  12101  mulgt1  12104  ltmulgt11  12105  lt2msq1  12129  ltdiv2  12131  ltmul2i  12166  ltmul2d  13091  ef01bndlem  16161  cos01gt0  16168  sin4lt0  16172  pockthg  16875  prmreclem1  16885  prmreclem5  16889  blcvx  24727  dvcvx  25966  itgulm  26357  tangtx  26453  chtub  27158  bposlem1  27230  bposlem2  27231  bposlem7  27236  lgsdilem  27270  lgsquadlem1  27326  lgsquadlem2  27327  chebbnd1lem3  27417  chto1ub  27422  pntlemb  27543  irrapxlem1  42242  irrapxlem2  42243  irrapxlem5  42246  pellexlem2  42250  stoweidlem11  45399  stoweidlem26  45414
  Copyright terms: Public domain W3C validator