MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexp12i Structured version   Visualization version   GIF version

Theorem rpexp12i 16773
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp12i ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))

Proof of Theorem rpexp12i
StepHypRef Expression
1 rpexp1i 16772 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
213adant3r 1181 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
3 simp2 1137 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐵 ∈ ℤ)
4 simp1 1136 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐴 ∈ ℤ)
5 simp3l 1201 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
6 zexpcl 14129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℤ)
74, 5, 6syl2anc 583 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝐴𝑀) ∈ ℤ)
8 simp3r 1202 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
9 rpexp1i 16772 . . . 4 ((𝐵 ∈ ℤ ∧ (𝐴𝑀) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐵 gcd (𝐴𝑀)) = 1 → ((𝐵𝑁) gcd (𝐴𝑀)) = 1))
103, 7, 8, 9syl3anc 1371 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐵 gcd (𝐴𝑀)) = 1 → ((𝐵𝑁) gcd (𝐴𝑀)) = 1))
117, 3gcdcomd 16562 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴𝑀) gcd 𝐵) = (𝐵 gcd (𝐴𝑀)))
1211eqeq1d 2742 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (((𝐴𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd (𝐴𝑀)) = 1))
13 zexpcl 14129 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
143, 8, 13syl2anc 583 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝐵𝑁) ∈ ℤ)
157, 14gcdcomd 16562 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴𝑀) gcd (𝐵𝑁)) = ((𝐵𝑁) gcd (𝐴𝑀)))
1615eqeq1d 2742 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (((𝐴𝑀) gcd (𝐵𝑁)) = 1 ↔ ((𝐵𝑁) gcd (𝐴𝑀)) = 1))
1710, 12, 163imtr4d 294 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (((𝐴𝑀) gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))
182, 17syld 47 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  (class class class)co 7450  1c1 11187  0cn0 12555  cz 12641  cexp 14114   gcd cgcd 16542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-inf 9514  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-fz 13570  df-fl 13845  df-mod 13923  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-dvds 16305  df-gcd 16543  df-prm 16721
This theorem is referenced by:  ablfac1b  20116  jm2.20nn  42956
  Copyright terms: Public domain W3C validator