Proof of Theorem modremain
| Step | Hyp | Ref
| Expression |
| 1 | | eqcom 2743 |
. 2
⊢ ((𝑁 mod 𝐷) = 𝑅 ↔ 𝑅 = (𝑁 mod 𝐷)) |
| 2 | | divalgmodcl 16445 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0)
→ (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 3 | 2 | 3adant3r 1181 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 4 | | ibar 528 |
. . . . 5
⊢ (𝑅 < 𝐷 → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 5 | 4 | adantl 481 |
. . . 4
⊢ ((𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 6 | 5 | 3ad2ant3 1135 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 7 | | nnz 12636 |
. . . . . 6
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℤ) |
| 8 | 7 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → 𝐷 ∈ ℤ) |
| 9 | | simp1 1136 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℤ) |
| 10 | | nn0z 12640 |
. . . . . . . 8
⊢ (𝑅 ∈ ℕ0
→ 𝑅 ∈
ℤ) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷) → 𝑅 ∈ ℤ) |
| 12 | 11 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℤ) |
| 13 | 9, 12 | zsubcld 12729 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (𝑁 − 𝑅) ∈ ℤ) |
| 14 | | divides 16293 |
. . . . 5
⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) |
| 15 | 8, 13, 14 | syl2anc 584 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) |
| 16 | | eqcom 2743 |
. . . . . 6
⊢ ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ (𝑁 − 𝑅) = (𝑧 · 𝐷)) |
| 17 | | zcn 12620 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 18 | 17 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℂ) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 20 | | nn0cn 12538 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℕ0
→ 𝑅 ∈
ℂ) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷) → 𝑅 ∈ ℂ) |
| 22 | 21 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℂ) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ) |
| 24 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) |
| 25 | 8 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ) |
| 26 | 24, 25 | zmulcld 12730 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ) |
| 27 | 26 | zcnd 12725 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ) |
| 28 | 19, 23, 27 | subadd2d 11640 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁 − 𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 29 | 16, 28 | bitrid 283 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 30 | 29 | rexbidva 3176 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 31 | 15, 30 | bitrd 279 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 32 | 3, 6, 31 | 3bitr2d 307 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 33 | 1, 32 | bitrid 283 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0
∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |