MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modremain Structured version   Visualization version   GIF version

Theorem modremain 16456
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
modremain ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑁   𝑧,𝑅

Proof of Theorem modremain
StepHypRef Expression
1 eqcom 2747 . 2 ((𝑁 mod 𝐷) = 𝑅𝑅 = (𝑁 mod 𝐷))
2 divalgmodcl 16455 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
323adant3r 1181 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
4 ibar 528 . . . . 5 (𝑅 < 𝐷 → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
54adantl 481 . . . 4 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
653ad2ant3 1135 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
7 nnz 12660 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
873ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝐷 ∈ ℤ)
9 simp1 1136 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℤ)
10 nn0z 12664 . . . . . . . 8 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
1110adantr 480 . . . . . . 7 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℤ)
12113ad2ant3 1135 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℤ)
139, 12zsubcld 12752 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑁𝑅) ∈ ℤ)
14 divides 16304 . . . . 5 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
158, 13, 14syl2anc 583 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
16 eqcom 2747 . . . . . 6 ((𝑧 · 𝐷) = (𝑁𝑅) ↔ (𝑁𝑅) = (𝑧 · 𝐷))
17 zcn 12644 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
18173ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℂ)
1918adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ)
20 nn0cn 12563 . . . . . . . . . 10 (𝑅 ∈ ℕ0𝑅 ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℂ)
22213ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℂ)
2322adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ)
24 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
258adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ)
2624, 25zmulcld 12753 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ)
2726zcnd 12748 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ)
2819, 23, 27subadd2d 11666 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
2916, 28bitrid 283 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3029rexbidva 3183 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3115, 30bitrd 279 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
323, 6, 313bitr2d 307 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
331, 32bitrid 283 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  cn 12293  0cn0 12553  cz 12639   mod cmo 13920  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303
This theorem is referenced by:  mod42tp1mod8  47476
  Copyright terms: Public domain W3C validator