MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modremain Structured version   Visualization version   GIF version

Theorem modremain 16337
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
modremain ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑁   𝑧,𝑅

Proof of Theorem modremain
StepHypRef Expression
1 eqcom 2736 . 2 ((𝑁 mod 𝐷) = 𝑅𝑅 = (𝑁 mod 𝐷))
2 divalgmodcl 16336 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
323adant3r 1182 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
4 ibar 528 . . . . 5 (𝑅 < 𝐷 → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
54adantl 481 . . . 4 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
653ad2ant3 1135 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
7 nnz 12510 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
873ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝐷 ∈ ℤ)
9 simp1 1136 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℤ)
10 nn0z 12514 . . . . . . . 8 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
1110adantr 480 . . . . . . 7 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℤ)
12113ad2ant3 1135 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℤ)
139, 12zsubcld 12603 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑁𝑅) ∈ ℤ)
14 divides 16183 . . . . 5 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
158, 13, 14syl2anc 584 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
16 eqcom 2736 . . . . . 6 ((𝑧 · 𝐷) = (𝑁𝑅) ↔ (𝑁𝑅) = (𝑧 · 𝐷))
17 zcn 12494 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
18173ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℂ)
1918adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ)
20 nn0cn 12412 . . . . . . . . . 10 (𝑅 ∈ ℕ0𝑅 ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℂ)
22213ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℂ)
2322adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ)
24 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
258adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ)
2624, 25zmulcld 12604 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ)
2726zcnd 12599 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ)
2819, 23, 27subadd2d 11512 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
2916, 28bitrid 283 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3029rexbidva 3151 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3115, 30bitrd 279 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
323, 6, 313bitr2d 307 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
331, 32bitrid 283 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5095  (class class class)co 7353  cc 11026   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365  cn 12146  0cn0 12402  cz 12489   mod cmo 13791  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182
This theorem is referenced by:  mod42tp1mod8  47590
  Copyright terms: Public domain W3C validator