MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblcntrps Structured version   Visualization version   GIF version

Theorem xblcntrps 22708
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblcntrps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem xblcntrps
StepHypRef Expression
1 simp2 1130 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃𝑋)
2 psmet0 22606 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
323adant3 1125 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃𝐷𝑃) = 0)
4 simp3r 1195 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 0 < 𝑅)
53, 4eqbrtrd 4988 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃𝐷𝑃) < 𝑅)
6 elblps 22685 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) < 𝑅)))
763adant3r 1174 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) < 𝑅)))
81, 5, 7mpbir2and 709 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081   class class class wbr 4966  cfv 6230  (class class class)co 7021  0cc0 10388  *cxr 10525   < clt 10526  PsMetcpsmet 20216  ballcbl 20219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-1st 7550  df-2nd 7551  df-map 8263  df-xr 10530  df-psmet 20224  df-bl 20227
This theorem is referenced by:  blcntrps  22710
  Copyright terms: Public domain W3C validator