![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xblcntrps | Structured version Visualization version GIF version |
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
xblcntrps | β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β π β (π(ballβπ·)π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β π β π) | |
2 | psmet0 24035 | . . . 4 β’ ((π· β (PsMetβπ) β§ π β π) β (ππ·π) = 0) | |
3 | 2 | 3adant3 1131 | . . 3 β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β (ππ·π) = 0) |
4 | simp3r 1201 | . . 3 β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β 0 < π ) | |
5 | 3, 4 | eqbrtrd 5170 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β (ππ·π) < π ) |
6 | elblps 24114 | . . 3 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (π β (π(ballβπ·)π ) β (π β π β§ (ππ·π) < π ))) | |
7 | 6 | 3adant3r 1180 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β (π β (π(ballβπ·)π ) β (π β π β§ (ππ·π) < π ))) |
8 | 1, 5, 7 | mpbir2and 710 | 1 β’ ((π· β (PsMetβπ) β§ π β π β§ (π β β* β§ 0 < π )) β π β (π(ballβπ·)π )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 (class class class)co 7412 0cc0 11113 β*cxr 11252 < clt 11253 PsMetcpsmet 21129 ballcbl 21132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-map 8825 df-xr 11257 df-psmet 21137 df-bl 21140 |
This theorem is referenced by: blcntrps 24139 |
Copyright terms: Public domain | W3C validator |