MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2 Structured version   Visualization version   GIF version

Theorem lemul2 11758
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
Assertion
Ref Expression
lemul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))

Proof of Theorem lemul2
StepHypRef Expression
1 lemul1 11757 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2 recn 10892 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10892 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 mulcom 10888 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
52, 3, 4syl2an 595 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
653adant2 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
7 recn 10892 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 mulcom 10888 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
97, 3, 8syl2an 595 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1093adant1 1128 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
116, 10breq12d 5083 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
12113adant3r 1179 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
131, 12bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  lediv2  11795  lemul2i  11828  lemul2d  12745  nnlesq  13850  sqrlem6  14887  qexpz  16530  vdwlem3  16612  vdwlem9  16618  iihalf2  24002  tcphcphlem1  24304  csbren  24468  trirn  24469  minveclem2  24495  itg2monolem1  24820  itg2monolem3  24822  itgabs  24904  abelthlem2  25496  pilem2  25516  logdivlti  25680  atans2  25986  leibpi  25997  log2tlbnd  26000  jensenlem2  26042  zetacvg  26069  basellem1  26135  basellem2  26136  basellem3  26137  chtub  26265  logfaclbnd  26275  bpos1lem  26335  bposlem2  26338  bposlem3  26339  bposlem4  26340  bposlem5  26341  bposlem6  26342  lgsquadlem1  26433  chebbnd1lem1  26522  chebbnd1lem3  26524  dchrisumlem1  26542  dchrisum0lem3  26572  mulog2sumlem1  26587  mulog2sumlem2  26588  chpdifbndlem1  26606  pntlemj  26656  pntlemo  26660  ostth2lem2  26687  ostth2lem3  26688  ostth3  26691  minvecolem2  29138  cdj3lem1  30697  subfaclim  33050  itgabsnc  35773  fzmul  35826  bfp  35909  irrapxlem1  40560  irrapxlem3  40562  pellfundex  40624  jm2.17b  40699  jm2.17c  40700  stoweidlem11  43442  stoweidlem26  43457  stoweidlem38  43469  lighneallem4a  44948
  Copyright terms: Public domain W3C validator