Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lemul2 | Structured version Visualization version GIF version |
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.) |
Ref | Expression |
---|---|
lemul2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lemul1 11815 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | |
2 | recn 10949 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | recn 10949 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
4 | mulcom 10945 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) | |
5 | 2, 3, 4 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
6 | 5 | 3adant2 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
7 | recn 10949 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
8 | mulcom 10945 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) | |
9 | 7, 3, 8 | syl2an 596 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
10 | 9 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
11 | 6, 10 | breq12d 5087 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) |
12 | 11 | 3adant3r 1180 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) |
13 | 1, 12 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7268 ℂcc 10857 ℝcr 10858 0cc0 10859 · cmul 10864 < clt 10997 ≤ cle 10998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 |
This theorem is referenced by: lediv2 11853 lemul2i 11886 lemul2d 12804 nnlesq 13910 sqrlem6 14947 qexpz 16590 vdwlem3 16672 vdwlem9 16678 iihalf2 24084 tcphcphlem1 24387 csbren 24551 trirn 24552 minveclem2 24578 itg2monolem1 24903 itg2monolem3 24905 itgabs 24987 abelthlem2 25579 pilem2 25599 logdivlti 25763 atans2 26069 leibpi 26080 log2tlbnd 26083 jensenlem2 26125 zetacvg 26152 basellem1 26218 basellem2 26219 basellem3 26220 chtub 26348 logfaclbnd 26358 bpos1lem 26418 bposlem2 26421 bposlem3 26422 bposlem4 26423 bposlem5 26424 bposlem6 26425 lgsquadlem1 26516 chebbnd1lem1 26605 chebbnd1lem3 26607 dchrisumlem1 26625 dchrisum0lem3 26655 mulog2sumlem1 26670 mulog2sumlem2 26671 chpdifbndlem1 26689 pntlemj 26739 pntlemo 26743 ostth2lem2 26770 ostth2lem3 26771 ostth3 26774 minvecolem2 29223 cdj3lem1 30782 subfaclim 33136 itgabsnc 35832 fzmul 35885 bfp 35968 irrapxlem1 40630 irrapxlem3 40632 pellfundex 40694 jm2.17b 40769 jm2.17c 40770 stoweidlem11 43511 stoweidlem26 43526 stoweidlem38 43538 lighneallem4a 45016 |
Copyright terms: Public domain | W3C validator |