MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2 Structured version   Visualization version   GIF version

Theorem lemul2 11816
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
Assertion
Ref Expression
lemul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))

Proof of Theorem lemul2
StepHypRef Expression
1 lemul1 11815 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2 recn 10949 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10949 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 mulcom 10945 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
52, 3, 4syl2an 596 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
653adant2 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
7 recn 10949 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 mulcom 10945 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
97, 3, 8syl2an 596 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1093adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
116, 10breq12d 5087 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
12113adant3r 1180 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
131, 12bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7268  cc 10857  cr 10858  0cc0 10859   · cmul 10864   < clt 10997  cle 10998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-po 5499  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196
This theorem is referenced by:  lediv2  11853  lemul2i  11886  lemul2d  12804  nnlesq  13910  sqrlem6  14947  qexpz  16590  vdwlem3  16672  vdwlem9  16678  iihalf2  24084  tcphcphlem1  24387  csbren  24551  trirn  24552  minveclem2  24578  itg2monolem1  24903  itg2monolem3  24905  itgabs  24987  abelthlem2  25579  pilem2  25599  logdivlti  25763  atans2  26069  leibpi  26080  log2tlbnd  26083  jensenlem2  26125  zetacvg  26152  basellem1  26218  basellem2  26219  basellem3  26220  chtub  26348  logfaclbnd  26358  bpos1lem  26418  bposlem2  26421  bposlem3  26422  bposlem4  26423  bposlem5  26424  bposlem6  26425  lgsquadlem1  26516  chebbnd1lem1  26605  chebbnd1lem3  26607  dchrisumlem1  26625  dchrisum0lem3  26655  mulog2sumlem1  26670  mulog2sumlem2  26671  chpdifbndlem1  26689  pntlemj  26739  pntlemo  26743  ostth2lem2  26770  ostth2lem3  26771  ostth3  26774  minvecolem2  29223  cdj3lem1  30782  subfaclim  33136  itgabsnc  35832  fzmul  35885  bfp  35968  irrapxlem1  40630  irrapxlem3  40632  pellfundex  40694  jm2.17b  40769  jm2.17c  40770  stoweidlem11  43511  stoweidlem26  43526  stoweidlem38  43538  lighneallem4a  45016
  Copyright terms: Public domain W3C validator