MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2 Structured version   Visualization version   GIF version

Theorem lemul2 12008
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
Assertion
Ref Expression
lemul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))

Proof of Theorem lemul2
StepHypRef Expression
1 lemul1 12007 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2 recn 11141 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 11141 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 mulcom 11137 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
52, 3, 4syl2an 596 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
653adant2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
7 recn 11141 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 mulcom 11137 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
97, 3, 8syl2an 596 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1093adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
116, 10breq12d 5118 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
12113adant3r 1181 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
131, 12bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056   < clt 11189  cle 11190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388
This theorem is referenced by:  lediv2  12045  lemul2i  12078  lemul2d  13001  nnlesq  14109  01sqrexlem6  15132  qexpz  16773  vdwlem3  16855  vdwlem9  16861  iihalf2  24296  tcphcphlem1  24599  csbren  24763  trirn  24764  minveclem2  24790  itg2monolem1  25115  itg2monolem3  25117  itgabs  25199  abelthlem2  25791  pilem2  25811  logdivlti  25975  atans2  26281  leibpi  26292  log2tlbnd  26295  jensenlem2  26337  zetacvg  26364  basellem1  26430  basellem2  26431  basellem3  26432  chtub  26560  logfaclbnd  26570  bpos1lem  26630  bposlem2  26633  bposlem3  26634  bposlem4  26635  bposlem5  26636  bposlem6  26637  lgsquadlem1  26728  chebbnd1lem1  26817  chebbnd1lem3  26819  dchrisumlem1  26837  dchrisum0lem3  26867  mulog2sumlem1  26882  mulog2sumlem2  26883  chpdifbndlem1  26901  pntlemj  26951  pntlemo  26955  ostth2lem2  26982  ostth2lem3  26983  ostth3  26986  minvecolem2  29817  cdj3lem1  31376  subfaclim  33782  itgabsnc  36147  fzmul  36200  bfp  36283  irrapxlem1  41131  irrapxlem3  41133  pellfundex  41195  jm2.17b  41271  jm2.17c  41272  stoweidlem11  44242  stoweidlem26  44257  stoweidlem38  44269  lighneallem4a  45790
  Copyright terms: Public domain W3C validator