Proof of Theorem atcvrj1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3l 1202 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ≠ 𝑅) | 
| 2 |  | hlatl 39361 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | 
| 3 | 2 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝐾 ∈ AtLat) | 
| 4 |  | simp21 1207 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝐴) | 
| 5 |  | simp23 1209 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑅 ∈ 𝐴) | 
| 6 |  | eqid 2737 | . . . . . 6
⊢
(meet‘𝐾) =
(meet‘𝐾) | 
| 7 |  | eqid 2737 | . . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 8 |  | atcvrj1x.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 6, 7, 8 | atnem0 39319 | . . . . 5
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ≠ 𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾))) | 
| 10 | 3, 4, 5, 9 | syl3anc 1373 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ≠ 𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾))) | 
| 11 | 1, 10 | mpbid 232 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)) | 
| 12 |  | simp1 1137 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝐾 ∈ HL) | 
| 13 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 14 | 13, 8 | atbase 39290 | . . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 15 | 4, 14 | syl 17 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ (Base‘𝐾)) | 
| 16 |  | atcvrj1x.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 17 |  | atcvrj1x.c | . . . . 5
⊢ 𝐶 = ( ⋖ ‘𝐾) | 
| 18 | 13, 16, 6, 7, 17, 8 | cvrp 39418 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑅))) | 
| 19 | 12, 15, 5, 18 | syl3anc 1373 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑅))) | 
| 20 | 11, 19 | mpbid 232 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑃 ∨ 𝑅)) | 
| 21 |  | simp3r 1203 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ≤ (𝑄 ∨ 𝑅)) | 
| 22 |  | atcvrj1x.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 23 | 22, 16, 8 | hlatexchb2 39396 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) | 
| 24 | 23 | 3adant3r 1182 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) | 
| 25 | 21, 24 | mpbid 232 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | 
| 26 | 20, 25 | breqtrd 5169 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) |