Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj1 Structured version   Visualization version   GIF version

Theorem atcvrj1 36726
 Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l = (le‘𝐾)
atcvrj1x.j = (join‘𝐾)
atcvrj1x.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj1x.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))

Proof of Theorem atcvrj1
StepHypRef Expression
1 simp3l 1198 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝑅)
2 hlatl 36655 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
323ad2ant1 1130 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝐾 ∈ AtLat)
4 simp21 1203 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐴)
5 simp23 1205 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑅𝐴)
6 eqid 2801 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
7 eqid 2801 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
8 atcvrj1x.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8atnem0 36613 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → (𝑃𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)))
103, 4, 5, 9syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)))
111, 10mpbid 235 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾))
12 simp1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝐾 ∈ HL)
13 eqid 2801 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 8atbase 36584 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
154, 14syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃 ∈ (Base‘𝐾))
16 atcvrj1x.j . . . . 5 = (join‘𝐾)
17 atcvrj1x.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
1813, 16, 6, 7, 17, 8cvrp 36711 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅𝐴) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 𝑅)))
1912, 15, 5, 18syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 𝑅)))
2011, 19mpbid 235 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑃 𝑅))
21 simp3r 1199 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃 (𝑄 𝑅))
22 atcvrj1x.l . . . . 5 = (le‘𝐾)
2322, 16, 8hlatexchb2 36689 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
24233adant3r 1178 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
2521, 24mpbid 235 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃 𝑅) = (𝑄 𝑅))
2620, 25breqtrd 5059 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  joincjn 17550  meetcmee 17551  0.cp0 17643   ⋖ ccvr 36557  Atomscatm 36558  AtLatcal 36559  HLchlt 36645 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-lat 17652  df-clat 17714  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646 This theorem is referenced by:  atcvrj2b  36727  atleneN  36729
 Copyright terms: Public domain W3C validator