Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj1 Structured version   Visualization version   GIF version

Theorem atcvrj1 39603
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l = (le‘𝐾)
atcvrj1x.j = (join‘𝐾)
atcvrj1x.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj1x.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))

Proof of Theorem atcvrj1
StepHypRef Expression
1 simp3l 1202 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝑅)
2 hlatl 39532 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
323ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝐾 ∈ AtLat)
4 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐴)
5 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑅𝐴)
6 eqid 2733 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
7 eqid 2733 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
8 atcvrj1x.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8atnem0 39490 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → (𝑃𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)))
103, 4, 5, 9syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)))
111, 10mpbid 232 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾))
12 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝐾 ∈ HL)
13 eqid 2733 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 8atbase 39461 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
154, 14syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃 ∈ (Base‘𝐾))
16 atcvrj1x.j . . . . 5 = (join‘𝐾)
17 atcvrj1x.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
1813, 16, 6, 7, 17, 8cvrp 39588 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅𝐴) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 𝑅)))
1912, 15, 5, 18syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 𝑅)))
2011, 19mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑃 𝑅))
21 simp3r 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃 (𝑄 𝑅))
22 atcvrj1x.l . . . . 5 = (le‘𝐾)
2322, 16, 8hlatexchb2 39566 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
24233adant3r 1182 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
2521, 24mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃 𝑅) = (𝑄 𝑅))
2620, 25breqtrd 5121 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  meetcmee 18226  0.cp0 18335  ccvr 39434  Atomscatm 39435  AtLatcal 39436  HLchlt 39522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523
This theorem is referenced by:  atcvrj2b  39604  atleneN  39606
  Copyright terms: Public domain W3C validator