Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcnv Structured version   Visualization version   GIF version

Theorem trlcnv 40153
Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
trlcnv.h 𝐻 = (LHyp‘𝐾)
trlcnv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcnv.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))

Proof of Theorem trlcnv
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
2 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
3 trlcnv.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 39994 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊)
54adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊)
6 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
7 trlcnv.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
86, 3, 7ltrn1o 40112 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
983adant3 1132 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
10 simp3l 1202 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
116, 2atbase 39276 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝑝 ∈ (Base‘𝐾))
13 f1ocnvfv1 7233 . . . . . . . 8 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑝)) = 𝑝)
149, 12, 13syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹‘(𝐹𝑝)) = 𝑝)
1514oveq2d 7385 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝))) = ((𝐹𝑝)(join‘𝐾)𝑝))
16 simp1l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
171, 2, 3, 7ltrnat 40128 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑝 ∈ (Atoms‘𝐾)) → (𝐹𝑝) ∈ (Atoms‘𝐾))
18173adant3r 1182 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹𝑝) ∈ (Atoms‘𝐾))
19 eqid 2729 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
2019, 2hlatjcom 39355 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐹𝑝) ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝐹𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹𝑝)))
2116, 18, 10, 20syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹𝑝)))
2215, 21eqtrd 2764 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝))) = (𝑝(join‘𝐾)(𝐹𝑝)))
2322oveq1d 7384 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊))
24 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
253, 7ltrncnv 40134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
26253adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹𝑇)
271, 2, 3, 7ltrnel 40127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊))
28 eqid 2729 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
29 trlcnv.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
301, 19, 28, 2, 3, 7, 29trlval2 40151 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊)) → (𝑅𝐹) = (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊))
3124, 26, 27, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) = (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊))
321, 19, 28, 2, 3, 7, 29trlval2 40151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) = ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊))
3323, 31, 323eqtr4d 2774 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) = (𝑅𝐹))
34333expa 1118 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) = (𝑅𝐹))
355, 34rexlimddv 3140 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  ccnv 5630  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17156  lecple 17204  joincjn 18253  meetcmee 18254  Atomscatm 39250  HLchlt 39337  LHypclh 39972  LTrncltrn 40089  trLctrl 40146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18236  df-poset 18255  df-plt 18270  df-lub 18286  df-glb 18287  df-join 18288  df-meet 18289  df-p0 18365  df-p1 18366  df-lat 18374  df-clat 18441  df-oposet 39163  df-ol 39165  df-oml 39166  df-covers 39253  df-ats 39254  df-atl 39285  df-cvlat 39309  df-hlat 39338  df-lhyp 39976  df-laut 39977  df-ldil 40092  df-ltrn 40093  df-trl 40147
This theorem is referenced by:  trlcocnv  40708  trlcoat  40711  trlcocnvat  40712  trlcone  40716  cdlemg46  40723  tendoicl  40784  cdlemh1  40803  cdlemh2  40804  cdlemh  40805  cdlemk3  40821  cdlemk12  40838  cdlemk12u  40860  cdlemkfid1N  40909  cdlemkid1  40910  cdlemkid2  40912  cdlemk45  40935
  Copyright terms: Public domain W3C validator