| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . 4
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 2 |  | eqid 2736 | . . . 4
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) | 
| 3 |  | trlcnv.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 4 | 1, 2, 3 | lhpexnle 40009 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊) | 
| 5 | 4 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊) | 
| 6 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 7 |  | trlcnv.t | . . . . . . . . . 10
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 | 6, 3, 7 | ltrn1o 40127 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 9 | 8 | 3adant3 1132 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 10 |  | simp3l 1201 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾)) | 
| 11 | 6, 2 | atbase 39291 | . . . . . . . . 9
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) | 
| 12 | 10, 11 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝑝 ∈ (Base‘𝐾)) | 
| 13 |  | f1ocnvfv1 7297 | . . . . . . . 8
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) → (◡𝐹‘(𝐹‘𝑝)) = 𝑝) | 
| 14 | 9, 12, 13 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (◡𝐹‘(𝐹‘𝑝)) = 𝑝) | 
| 15 | 14 | oveq2d 7448 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹‘𝑝)(join‘𝐾)(◡𝐹‘(𝐹‘𝑝))) = ((𝐹‘𝑝)(join‘𝐾)𝑝)) | 
| 16 |  | simp1l 1197 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐾 ∈ HL) | 
| 17 | 1, 2, 3, 7 | ltrnat 40143 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝐹‘𝑝) ∈ (Atoms‘𝐾)) | 
| 18 | 17 | 3adant3r 1181 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹‘𝑝) ∈ (Atoms‘𝐾)) | 
| 19 |  | eqid 2736 | . . . . . . . 8
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 20 | 19, 2 | hlatjcom 39370 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑝) ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝐹‘𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹‘𝑝))) | 
| 21 | 16, 18, 10, 20 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹‘𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹‘𝑝))) | 
| 22 | 15, 21 | eqtrd 2776 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹‘𝑝)(join‘𝐾)(◡𝐹‘(𝐹‘𝑝))) = (𝑝(join‘𝐾)(𝐹‘𝑝))) | 
| 23 | 22 | oveq1d 7447 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (((𝐹‘𝑝)(join‘𝐾)(◡𝐹‘(𝐹‘𝑝)))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)(𝐹‘𝑝))(meet‘𝐾)𝑊)) | 
| 24 |  | simp1 1136 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 25 | 3, 7 | ltrncnv 40149 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) | 
| 26 | 25 | 3adant3 1132 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ◡𝐹 ∈ 𝑇) | 
| 27 | 1, 2, 3, 7 | ltrnel 40142 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹‘𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹‘𝑝)(le‘𝐾)𝑊)) | 
| 28 |  | eqid 2736 | . . . . . 6
⊢
(meet‘𝐾) =
(meet‘𝐾) | 
| 29 |  | trlcnv.r | . . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 30 | 1, 19, 28, 2, 3, 7,
29 | trlval2 40166 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡𝐹 ∈ 𝑇 ∧ ((𝐹‘𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹‘𝑝)(le‘𝐾)𝑊)) → (𝑅‘◡𝐹) = (((𝐹‘𝑝)(join‘𝐾)(◡𝐹‘(𝐹‘𝑝)))(meet‘𝐾)𝑊)) | 
| 31 | 24, 26, 27, 30 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘◡𝐹) = (((𝐹‘𝑝)(join‘𝐾)(◡𝐹‘(𝐹‘𝑝)))(meet‘𝐾)𝑊)) | 
| 32 | 1, 19, 28, 2, 3, 7,
29 | trlval2 40166 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘𝐹) = ((𝑝(join‘𝐾)(𝐹‘𝑝))(meet‘𝐾)𝑊)) | 
| 33 | 23, 31, 32 | 3eqtr4d 2786 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) | 
| 34 | 33 | 3expa 1118 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) | 
| 35 | 5, 34 | rexlimddv 3160 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |