Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcnv Structured version   Visualization version   GIF version

Theorem trlcnv 39024
Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
trlcnv.h 𝐻 = (LHypβ€˜πΎ)
trlcnv.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlcnv.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlcnv (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))

Proof of Theorem trlcnv
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
2 eqid 2732 . . . 4 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
3 trlcnv.h . . . 4 𝐻 = (LHypβ€˜πΎ)
41, 2, 3lhpexnle 38865 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š)
54adantr 481 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š)
6 eqid 2732 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 trlcnv.t . . . . . . . . . 10 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
86, 3, 7ltrn1o 38983 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
983adant3 1132 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
10 simp3l 1201 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝑝 ∈ (Atomsβ€˜πΎ))
116, 2atbase 38147 . . . . . . . . 9 (𝑝 ∈ (Atomsβ€˜πΎ) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
1210, 11syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
13 f1ocnvfv1 7270 . . . . . . . 8 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘)) = 𝑝)
149, 12, 13syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘)) = 𝑝)
1514oveq2d 7421 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘))) = ((πΉβ€˜π‘)(joinβ€˜πΎ)𝑝))
16 simp1l 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝐾 ∈ HL)
171, 2, 3, 7ltrnat 38999 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ (πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ))
18173adant3r 1181 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ))
19 eqid 2732 . . . . . . . 8 (joinβ€˜πΎ) = (joinβ€˜πΎ)
2019, 2hlatjcom 38226 . . . . . . 7 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)𝑝) = (𝑝(joinβ€˜πΎ)(πΉβ€˜π‘)))
2116, 18, 10, 20syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)𝑝) = (𝑝(joinβ€˜πΎ)(πΉβ€˜π‘)))
2215, 21eqtrd 2772 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘))) = (𝑝(joinβ€˜πΎ)(πΉβ€˜π‘)))
2322oveq1d 7420 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘)))(meetβ€˜πΎ)π‘Š) = ((𝑝(joinβ€˜πΎ)(πΉβ€˜π‘))(meetβ€˜πΎ)π‘Š))
24 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
253, 7ltrncnv 39005 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
26253adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ◑𝐹 ∈ 𝑇)
271, 2, 3, 7ltrnel 38998 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ) ∧ Β¬ (πΉβ€˜π‘)(leβ€˜πΎ)π‘Š))
28 eqid 2732 . . . . . 6 (meetβ€˜πΎ) = (meetβ€˜πΎ)
29 trlcnv.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
301, 19, 28, 2, 3, 7, 29trlval2 39022 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ◑𝐹 ∈ 𝑇 ∧ ((πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ) ∧ Β¬ (πΉβ€˜π‘)(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘)))(meetβ€˜πΎ)π‘Š))
3124, 26, 27, 30syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘)))(meetβ€˜πΎ)π‘Š))
321, 19, 28, 2, 3, 7, 29trlval2 39022 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜πΉ) = ((𝑝(joinβ€˜πΎ)(πΉβ€˜π‘))(meetβ€˜πΎ)π‘Š))
3323, 31, 323eqtr4d 2782 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
34333expa 1118 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
355, 34rexlimddv 3161 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5147  β—‘ccnv 5674  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Atomscatm 38121  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  trlcocnv  39579  trlcoat  39582  trlcocnvat  39583  trlcone  39587  cdlemg46  39594  tendoicl  39655  cdlemh1  39674  cdlemh2  39675  cdlemh  39676  cdlemk3  39692  cdlemk12  39709  cdlemk12u  39731  cdlemkfid1N  39780  cdlemkid1  39781  cdlemkid2  39783  cdlemk45  39806
  Copyright terms: Public domain W3C validator