Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcnv Structured version   Visualization version   GIF version

Theorem trlcnv 39036
Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
trlcnv.h 𝐻 = (LHypβ€˜πΎ)
trlcnv.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlcnv.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlcnv (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))

Proof of Theorem trlcnv
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
2 eqid 2733 . . . 4 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
3 trlcnv.h . . . 4 𝐻 = (LHypβ€˜πΎ)
41, 2, 3lhpexnle 38877 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š)
54adantr 482 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ βˆƒπ‘ ∈ (Atomsβ€˜πΎ) Β¬ 𝑝(leβ€˜πΎ)π‘Š)
6 eqid 2733 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 trlcnv.t . . . . . . . . . 10 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
86, 3, 7ltrn1o 38995 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
983adant3 1133 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
10 simp3l 1202 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝑝 ∈ (Atomsβ€˜πΎ))
116, 2atbase 38159 . . . . . . . . 9 (𝑝 ∈ (Atomsβ€˜πΎ) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
1210, 11syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
13 f1ocnvfv1 7274 . . . . . . . 8 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑝 ∈ (Baseβ€˜πΎ)) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘)) = 𝑝)
149, 12, 13syl2anc 585 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘)) = 𝑝)
1514oveq2d 7425 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘))) = ((πΉβ€˜π‘)(joinβ€˜πΎ)𝑝))
16 simp1l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝐾 ∈ HL)
171, 2, 3, 7ltrnat 39011 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ (πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ))
18173adant3r 1182 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ))
19 eqid 2733 . . . . . . . 8 (joinβ€˜πΎ) = (joinβ€˜πΎ)
2019, 2hlatjcom 38238 . . . . . . 7 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)𝑝) = (𝑝(joinβ€˜πΎ)(πΉβ€˜π‘)))
2116, 18, 10, 20syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)𝑝) = (𝑝(joinβ€˜πΎ)(πΉβ€˜π‘)))
2215, 21eqtrd 2773 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘))) = (𝑝(joinβ€˜πΎ)(πΉβ€˜π‘)))
2322oveq1d 7424 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘)))(meetβ€˜πΎ)π‘Š) = ((𝑝(joinβ€˜πΎ)(πΉβ€˜π‘))(meetβ€˜πΎ)π‘Š))
24 simp1 1137 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
253, 7ltrncnv 39017 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
26253adant3 1133 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ◑𝐹 ∈ 𝑇)
271, 2, 3, 7ltrnel 39010 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ) ∧ Β¬ (πΉβ€˜π‘)(leβ€˜πΎ)π‘Š))
28 eqid 2733 . . . . . 6 (meetβ€˜πΎ) = (meetβ€˜πΎ)
29 trlcnv.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
301, 19, 28, 2, 3, 7, 29trlval2 39034 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ◑𝐹 ∈ 𝑇 ∧ ((πΉβ€˜π‘) ∈ (Atomsβ€˜πΎ) ∧ Β¬ (πΉβ€˜π‘)(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘)))(meetβ€˜πΎ)π‘Š))
3124, 26, 27, 30syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (((πΉβ€˜π‘)(joinβ€˜πΎ)(β—‘πΉβ€˜(πΉβ€˜π‘)))(meetβ€˜πΎ)π‘Š))
321, 19, 28, 2, 3, 7, 29trlval2 39034 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜πΉ) = ((𝑝(joinβ€˜πΎ)(πΉβ€˜π‘))(meetβ€˜πΎ)π‘Š))
3323, 31, 323eqtr4d 2783 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
34333expa 1119 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
355, 34rexlimddv 3162 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071   class class class wbr 5149  β—‘ccnv 5676  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  joincjn 18264  meetcmee 18265  Atomscatm 38133  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  trLctrl 39029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030
This theorem is referenced by:  trlcocnv  39591  trlcoat  39594  trlcocnvat  39595  trlcone  39599  cdlemg46  39606  tendoicl  39667  cdlemh1  39686  cdlemh2  39687  cdlemh  39688  cdlemk3  39704  cdlemk12  39721  cdlemk12u  39743  cdlemkfid1N  39792  cdlemkid1  39793  cdlemkid2  39795  cdlemk45  39818
  Copyright terms: Public domain W3C validator