MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblcntr Structured version   Visualization version   GIF version

Theorem xblcntr 24350
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
xblcntr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem xblcntr
StepHypRef Expression
1 simp2 1137 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃𝑋)
2 xmet0 24281 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
323adant3 1132 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃𝐷𝑃) = 0)
4 simp3r 1203 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 0 < 𝑅)
53, 4eqbrtrd 5141 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃𝐷𝑃) < 𝑅)
6 elbl 24327 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) < 𝑅)))
763adant3r 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) < 𝑅)))
81, 5, 7mpbir2and 713 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  *cxr 11268   < clt 11269  ∞Metcxmet 21300  ballcbl 21302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-xr 11273  df-psmet 21307  df-xmet 21308  df-bl 21310
This theorem is referenced by:  blcntr  24352  xbln0  24353  blcld  24444  metds0  24790  metdseq0  24794  heicant  37679  qndenserrnbl  46324
  Copyright terms: Public domain W3C validator