MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblcntr Structured version   Visualization version   GIF version

Theorem xblcntr 24267
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
xblcntr ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))

Proof of Theorem xblcntr
StepHypRef Expression
1 simp2 1134 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 𝑃 ∈ 𝑋)
2 xmet0 24198 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝑃𝐷𝑃) = 0)
323adant3 1129 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ (𝑃𝐷𝑃) = 0)
4 simp3r 1199 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 0 < 𝑅)
53, 4eqbrtrd 5163 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ (𝑃𝐷𝑃) < 𝑅)
6 elbl 24244 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝑃 ∈ 𝑋 ∧ (𝑃𝐷𝑃) < 𝑅)))
763adant3r 1178 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ (𝑃 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝑃 ∈ 𝑋 ∧ (𝑃𝐷𝑃) < 𝑅)))
81, 5, 7mpbir2and 710 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  0cc0 11109  β„*cxr 11248   < clt 11249  βˆžMetcxmet 21220  ballcbl 21222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-map 8821  df-xr 11253  df-psmet 21227  df-xmet 21228  df-bl 21230
This theorem is referenced by:  blcntr  24269  xbln0  24270  blcld  24364  metds0  24716  metdseq0  24720  heicant  37035  qndenserrnbl  45565
  Copyright terms: Public domain W3C validator