MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1 Structured version   Visualization version   GIF version

Theorem lemul1 12065
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
lemul1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ)))

Proof of Theorem lemul1
StepHypRef Expression
1 ltmul1 12063 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
2 recn 11199 . . . . 5 (๐ด โˆˆ โ„ โ†’ ๐ด โˆˆ โ„‚)
3 recn 11199 . . . . 5 (๐ต โˆˆ โ„ โ†’ ๐ต โˆˆ โ„‚)
4 recn 11199 . . . . . . 7 (๐ถ โˆˆ โ„ โ†’ ๐ถ โˆˆ โ„‚)
54adantr 481 . . . . . 6 ((๐ถ โˆˆ โ„ โˆง 0 < ๐ถ) โ†’ ๐ถ โˆˆ โ„‚)
6 gt0ne0 11678 . . . . . 6 ((๐ถ โˆˆ โ„ โˆง 0 < ๐ถ) โ†’ ๐ถ โ‰  0)
75, 6jca 512 . . . . 5 ((๐ถ โˆˆ โ„ โˆง 0 < ๐ถ) โ†’ (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0))
8 mulcan2 11851 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โ†” ๐ด = ๐ต))
92, 3, 7, 8syl3an 1160 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โ†” ๐ด = ๐ต))
109bicomd 222 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด = ๐ต โ†” (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ)))
111, 10orbi12d 917 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด < ๐ต โˆจ ๐ด = ๐ต) โ†” ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โˆจ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ))))
12 leloe 11299 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ด < ๐ต โˆจ ๐ด = ๐ต)))
13123adant3 1132 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ด < ๐ต โˆจ ๐ด = ๐ต)))
14 remulcl 11194 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„)
15143adant2 1131 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„)
16 remulcl 11194 . . . . 5 ((๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„)
17163adant1 1130 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„)
1815, 17leloed 11356 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ ((๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ) โ†” ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โˆจ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ))))
19183adant3r 1181 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ) โ†” ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โˆจ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ))))
2011, 13, 193bitr4d 310 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆจ wo 845   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   โ‰  wne 2940   class class class wbr 5148  (class class class)co 7408  โ„‚cc 11107  โ„cr 11108  0cc0 11109   ยท cmul 11114   < clt 11247   โ‰ค cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446
This theorem is referenced by:  lemul2  12066  lemul1a  12067  lediv23  12105  lemul1i  12135  ledivp1i  12138  div4p1lem1div2  12466  lemul1d  13058  xlemul1a  13266  iccdil  13466  expgt1  14065  sqlecan  14172  facubnd  14259  01sqrexlem2  15189  01sqrexlem6  15193  eirrlem  16146  mbfi1fseqlem3  25234  mbfi1fseqlem4  25235  mbfi1fseqlem5  25236  itg2monolem3  25269  atans2  26433  log2tlbnd  26447  fsumfldivdiaglem  26690  chtublem  26711  bposlem2  26785  bposlem5  26788  gausslemma2dlem2  26867  2lgslem1a1  26889  selberglem2  27046  pntpbnd1a  27085  pntpbnd2  27087  ostth2lem3  27135  htthlem  30165  cnlnadjlem7  31321  bfplem1  36685  jm2.24nn  41688  jm3.1lem2  41747  stoweidlem14  44720  stoweidlem26  44732  stoweidlem34  44740  fmtno4prmfac  46230
  Copyright terms: Public domain W3C validator