MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimp Structured version   Visualization version   GIF version

Theorem cramerimp 22713
Description: One direction of Cramer's rule (according to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."): The ith component of the solution vector of a system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the righthand side vector of the system of linear equations divided by the determinant of the matrix of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.d 𝐷 = (𝑁 maDet 𝑅)
cramerimp.q / = (/r𝑅)
Assertion
Ref Expression
cramerimp (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = ((𝐷𝐻) / (𝐷𝑋)))

Proof of Theorem cramerimp
StepHypRef Expression
1 crngring 20272 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
323ad2ant1 1133 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ Ring)
4 cramerimp.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
5 cramerimp.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
6 cramerimp.b . . . . . . . 8 𝐵 = (Base‘𝐴)
7 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
84, 5, 6, 7mdetf 22622 . . . . . . 7 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
98adantr 480 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐷:𝐵⟶(Base‘𝑅))
1093ad2ant1 1133 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝐷:𝐵⟶(Base‘𝑅))
11 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
125, 6matrcl 22437 . . . . . . . . . . 11 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1312simpld 494 . . . . . . . . . 10 (𝑋𝐵𝑁 ∈ Fin)
1413adantr 480 . . . . . . . . 9 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
152, 14anim12i 612 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
16153adant3 1132 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
17 ne0i 4364 . . . . . . . . . . 11 (𝐼𝑁𝑁 ≠ ∅)
181, 17anim12ci 613 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring))
1918anim1i 614 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)))
20193adant3 1132 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)))
21 simpl 482 . . . . . . . . 9 (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑍) = 𝑌)
22213ad2ant3 1135 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑋 · 𝑍) = 𝑌)
23 cramerimp.v . . . . . . . . 9 𝑉 = ((Base‘𝑅) ↑m 𝑁)
24 cramerimp.x . . . . . . . . 9 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
255, 6, 23, 24slesolvec 22706 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2620, 22, 25sylc 65 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝑍𝑉)
27 simpr 484 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
28273ad2ant1 1133 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝐼𝑁)
29 eqid 2740 . . . . . . . 8 (1r𝐴) = (1r𝐴)
305, 6, 23, 29ma1repvcl 22597 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
3116, 26, 28, 30syl12anc 836 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
3211, 31eqeltrid 2848 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝐸𝐵)
3310, 32ffvelcdmd 7119 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝐸) ∈ (Base‘𝑅))
34 simpr 484 . . . . 5 (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Unit‘𝑅))
35343ad2ant3 1135 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝑋) ∈ (Unit‘𝑅))
36 eqid 2740 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
37 cramerimp.q . . . . 5 / = (/r𝑅)
38 eqid 2740 . . . . 5 (.r𝑅) = (.r𝑅)
397, 36, 37, 38dvrcan3 20436 . . . 4 ((𝑅 ∈ Ring ∧ (𝐷𝐸) ∈ (Base‘𝑅) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (((𝐷𝐸)(.r𝑅)(𝐷𝑋)) / (𝐷𝑋)) = (𝐷𝐸))
403, 33, 35, 39syl3anc 1371 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((𝐷𝐸)(.r𝑅)(𝐷𝑋)) / (𝐷𝑋)) = (𝐷𝐸))
41 simpl 482 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
42413ad2ant1 1133 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ CRing)
437, 36unitcl 20401 . . . . . . 7 ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝐷𝑋) ∈ (Base‘𝑅))
4443adantl 481 . . . . . 6 (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Base‘𝑅))
45443ad2ant3 1135 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝑋) ∈ (Base‘𝑅))
467, 38crngcom 20278 . . . . 5 ((𝑅 ∈ CRing ∧ (𝐷𝐸) ∈ (Base‘𝑅) ∧ (𝐷𝑋) ∈ (Base‘𝑅)) → ((𝐷𝐸)(.r𝑅)(𝐷𝑋)) = ((𝐷𝑋)(.r𝑅)(𝐷𝐸)))
4742, 33, 45, 46syl3anc 1371 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → ((𝐷𝐸)(.r𝑅)(𝐷𝑋)) = ((𝐷𝑋)(.r𝑅)(𝐷𝐸)))
4847oveq1d 7463 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((𝐷𝐸)(.r𝑅)(𝐷𝑋)) / (𝐷𝑋)) = (((𝐷𝑋)(.r𝑅)(𝐷𝐸)) / (𝐷𝑋)))
4914adantl 481 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑁 ∈ Fin)
5041adantr 480 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑅 ∈ CRing)
5127adantr 480 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝐼𝑁)
5249, 50, 513jca 1128 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁))
53523adant3 1132 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁))
545, 23, 11, 4cramerimplem1 22710 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))
5553, 26, 54syl2anc 583 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝐸) = (𝑍𝐼))
5640, 48, 553eqtr3rd 2789 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = (((𝐷𝑋)(.r𝑅)(𝐷𝐸)) / (𝐷𝑋)))
57 cramerimp.h . . . . 5 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
585, 6, 23, 11, 57, 24, 4, 38cramerimplem3 22712 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋)(.r𝑅)(𝐷𝐸)) = (𝐷𝐻))
59583adant3r 1181 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → ((𝐷𝑋)(.r𝑅)(𝐷𝐸)) = (𝐷𝐻))
6059oveq1d 7463 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((𝐷𝑋)(.r𝑅)(𝐷𝐸)) / (𝐷𝑋)) = ((𝐷𝐻) / (𝐷𝑋)))
6156, 60eqtrd 2780 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = ((𝐷𝐻) / (𝐷𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352  cop 4654  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312  1rcur 20208  Ringcrg 20260  CRingccrg 20261  Unitcui 20381  /rcdvr 20426   Mat cmat 22432   maVecMul cmvmul 22567   matRepV cmatrepV 22584   maDet cmdat 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-evpm 19534  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mamu 22416  df-mat 22433  df-mvmul 22568  df-marrep 22585  df-marepv 22586  df-subma 22604  df-mdet 22612  df-minmar1 22662
This theorem is referenced by:  cramerlem1  22714
  Copyright terms: Public domain W3C validator