Proof of Theorem cramerimp
| Step | Hyp | Ref
| Expression |
| 1 | | crngring 20242 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 3 | 2 | 3ad2ant1 1134 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ Ring) |
| 4 | | cramerimp.d |
. . . . . . . 8
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 5 | | cramerimp.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 6 | | cramerimp.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
| 7 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | 4, 5, 6, 7 | mdetf 22601 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅)) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝐷:𝐵⟶(Base‘𝑅)) |
| 10 | 9 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝐷:𝐵⟶(Base‘𝑅)) |
| 11 | | cramerimp.e |
. . . . . 6
⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) |
| 12 | 5, 6 | matrcl 22416 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 13 | 12 | simpld 494 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 15 | 2, 14 | anim12i 613 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
| 16 | 15 | 3adant3 1133 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
| 17 | | ne0i 4341 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑁 → 𝑁 ≠ ∅) |
| 18 | 1, 17 | anim12ci 614 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring)) |
| 19 | 18 | anim1i 615 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
| 20 | 19 | 3adant3 1133 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
| 21 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑍) = 𝑌) |
| 22 | 21 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑋 · 𝑍) = 𝑌) |
| 23 | | cramerimp.v |
. . . . . . . . 9
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| 24 | | cramerimp.x |
. . . . . . . . 9
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
| 25 | 5, 6, 23, 24 | slesolvec 22685 |
. . . . . . . 8
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
| 26 | 20, 22, 25 | sylc 65 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝑍 ∈ 𝑉) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
| 28 | 27 | 3ad2ant1 1134 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝐼 ∈ 𝑁) |
| 29 | | eqid 2737 |
. . . . . . . 8
⊢
(1r‘𝐴) = (1r‘𝐴) |
| 30 | 5, 6, 23, 29 | ma1repvcl 22576 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) → (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵) |
| 31 | 16, 26, 28, 30 | syl12anc 837 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵) |
| 32 | 11, 31 | eqeltrid 2845 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝐸 ∈ 𝐵) |
| 33 | 10, 32 | ffvelcdmd 7105 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝐸) ∈ (Base‘𝑅)) |
| 34 | | simpr 484 |
. . . . 5
⊢ (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝐷‘𝑋) ∈ (Unit‘𝑅)) |
| 35 | 34 | 3ad2ant3 1136 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝑋) ∈ (Unit‘𝑅)) |
| 36 | | eqid 2737 |
. . . . 5
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 37 | | cramerimp.q |
. . . . 5
⊢ / =
(/r‘𝑅) |
| 38 | | eqid 2737 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 39 | 7, 36, 37, 38 | dvrcan3 20410 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘𝐸) ∈ (Base‘𝑅) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) / (𝐷‘𝑋)) = (𝐷‘𝐸)) |
| 40 | 3, 33, 35, 39 | syl3anc 1373 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) / (𝐷‘𝑋)) = (𝐷‘𝐸)) |
| 41 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ CRing) |
| 42 | 41 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ CRing) |
| 43 | 7, 36 | unitcl 20375 |
. . . . . . 7
⊢ ((𝐷‘𝑋) ∈ (Unit‘𝑅) → (𝐷‘𝑋) ∈ (Base‘𝑅)) |
| 44 | 43 | adantl 481 |
. . . . . 6
⊢ (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝐷‘𝑋) ∈ (Base‘𝑅)) |
| 45 | 44 | 3ad2ant3 1136 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝑋) ∈ (Base‘𝑅)) |
| 46 | 7, 38 | crngcom 20248 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝐷‘𝐸) ∈ (Base‘𝑅) ∧ (𝐷‘𝑋) ∈ (Base‘𝑅)) → ((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) = ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸))) |
| 47 | 42, 33, 45, 46 | syl3anc 1373 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) = ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸))) |
| 48 | 47 | oveq1d 7446 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) / (𝐷‘𝑋)) = (((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) / (𝐷‘𝑋))) |
| 49 | 14 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → 𝑁 ∈ Fin) |
| 50 | 41 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → 𝑅 ∈ CRing) |
| 51 | 27 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → 𝐼 ∈ 𝑁) |
| 52 | 49, 50, 51 | 3jca 1129 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁)) |
| 53 | 52 | 3adant3 1133 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁)) |
| 54 | 5, 23, 11, 4 | cramerimplem1 22689 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘𝐸) = (𝑍‘𝐼)) |
| 55 | 53, 26, 54 | syl2anc 584 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝐸) = (𝑍‘𝐼)) |
| 56 | 40, 48, 55 | 3eqtr3rd 2786 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝐼) = (((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) / (𝐷‘𝑋))) |
| 57 | | cramerimp.h |
. . . . 5
⊢ 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) |
| 58 | 5, 6, 23, 11, 57, 24, 4, 38 | cramerimplem3 22691 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) = (𝐷‘𝐻)) |
| 59 | 58 | 3adant3r 1182 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) = (𝐷‘𝐻)) |
| 60 | 59 | oveq1d 7446 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) / (𝐷‘𝑋)) = ((𝐷‘𝐻) / (𝐷‘𝑋))) |
| 61 | 56, 60 | eqtrd 2777 |
1
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝐼) = ((𝐷‘𝐻) / (𝐷‘𝑋))) |