Proof of Theorem cramerimp
Step | Hyp | Ref
| Expression |
1 | | crngring 19710 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ Ring) |
3 | 2 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ Ring) |
4 | | cramerimp.d |
. . . . . . . 8
⊢ 𝐷 = (𝑁 maDet 𝑅) |
5 | | cramerimp.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | | cramerimp.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
7 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | 4, 5, 6, 7 | mdetf 21652 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅)) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝐷:𝐵⟶(Base‘𝑅)) |
10 | 9 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝐷:𝐵⟶(Base‘𝑅)) |
11 | | cramerimp.e |
. . . . . 6
⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) |
12 | 5, 6 | matrcl 21469 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
13 | 12 | simpld 494 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
15 | 2, 14 | anim12i 612 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
16 | 15 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
17 | | ne0i 4265 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑁 → 𝑁 ≠ ∅) |
18 | 1, 17 | anim12ci 613 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring)) |
19 | 18 | anim1i 614 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
20 | 19 | 3adant3 1130 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
21 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑍) = 𝑌) |
22 | 21 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑋 · 𝑍) = 𝑌) |
23 | | cramerimp.v |
. . . . . . . . 9
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
24 | | cramerimp.x |
. . . . . . . . 9
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
25 | 5, 6, 23, 24 | slesolvec 21736 |
. . . . . . . 8
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
26 | 20, 22, 25 | sylc 65 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝑍 ∈ 𝑉) |
27 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
28 | 27 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝐼 ∈ 𝑁) |
29 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝐴) = (1r‘𝐴) |
30 | 5, 6, 23, 29 | ma1repvcl 21627 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) → (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵) |
31 | 16, 26, 28, 30 | syl12anc 833 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵) |
32 | 11, 31 | eqeltrid 2843 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝐸 ∈ 𝐵) |
33 | 10, 32 | ffvelrnd 6944 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝐸) ∈ (Base‘𝑅)) |
34 | | simpr 484 |
. . . . 5
⊢ (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝐷‘𝑋) ∈ (Unit‘𝑅)) |
35 | 34 | 3ad2ant3 1133 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝑋) ∈ (Unit‘𝑅)) |
36 | | eqid 2738 |
. . . . 5
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
37 | | cramerimp.q |
. . . . 5
⊢ / =
(/r‘𝑅) |
38 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
39 | 7, 36, 37, 38 | dvrcan3 19849 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘𝐸) ∈ (Base‘𝑅) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) / (𝐷‘𝑋)) = (𝐷‘𝐸)) |
40 | 3, 33, 35, 39 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) / (𝐷‘𝑋)) = (𝐷‘𝐸)) |
41 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ CRing) |
42 | 41 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ CRing) |
43 | 7, 36 | unitcl 19816 |
. . . . . . 7
⊢ ((𝐷‘𝑋) ∈ (Unit‘𝑅) → (𝐷‘𝑋) ∈ (Base‘𝑅)) |
44 | 43 | adantl 481 |
. . . . . 6
⊢ (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝐷‘𝑋) ∈ (Base‘𝑅)) |
45 | 44 | 3ad2ant3 1133 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝑋) ∈ (Base‘𝑅)) |
46 | 7, 38 | crngcom 19716 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝐷‘𝐸) ∈ (Base‘𝑅) ∧ (𝐷‘𝑋) ∈ (Base‘𝑅)) → ((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) = ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸))) |
47 | 42, 33, 45, 46 | syl3anc 1369 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) = ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸))) |
48 | 47 | oveq1d 7270 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((𝐷‘𝐸)(.r‘𝑅)(𝐷‘𝑋)) / (𝐷‘𝑋)) = (((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) / (𝐷‘𝑋))) |
49 | 14 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → 𝑁 ∈ Fin) |
50 | 41 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → 𝑅 ∈ CRing) |
51 | 27 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → 𝐼 ∈ 𝑁) |
52 | 49, 50, 51 | 3jca 1126 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁)) |
53 | 52 | 3adant3 1130 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁)) |
54 | 5, 23, 11, 4 | cramerimplem1 21740 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘𝐸) = (𝑍‘𝐼)) |
55 | 53, 26, 54 | syl2anc 583 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝐷‘𝐸) = (𝑍‘𝐼)) |
56 | 40, 48, 55 | 3eqtr3rd 2787 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝐼) = (((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) / (𝐷‘𝑋))) |
57 | | cramerimp.h |
. . . . 5
⊢ 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) |
58 | 5, 6, 23, 11, 57, 24, 4, 38 | cramerimplem3 21742 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) = (𝐷‘𝐻)) |
59 | 58 | 3adant3r 1179 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) = (𝐷‘𝐻)) |
60 | 59 | oveq1d 7270 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (((𝐷‘𝑋)(.r‘𝑅)(𝐷‘𝐸)) / (𝐷‘𝑋)) = ((𝐷‘𝐻) / (𝐷‘𝑋))) |
61 | 56, 60 | eqtrd 2778 |
1
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝐼) = ((𝐷‘𝐻) / (𝐷‘𝑋))) |