MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimp Structured version   Visualization version   GIF version

Theorem cramerimp 22035
Description: One direction of Cramer's rule (according to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."): The ith component of the solution vector of a system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the righthand side vector of the system of linear equations divided by the determinant of the matrix of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.d 𝐷 = (𝑁 maDet 𝑅)
cramerimp.q / = (/r𝑅)
Assertion
Ref Expression
cramerimp (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = ((𝐷𝐻) / (𝐷𝑋)))

Proof of Theorem cramerimp
StepHypRef Expression
1 crngring 19976 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
323ad2ant1 1133 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ Ring)
4 cramerimp.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
5 cramerimp.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
6 cramerimp.b . . . . . . . 8 𝐵 = (Base‘𝐴)
7 eqid 2736 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
84, 5, 6, 7mdetf 21944 . . . . . . 7 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
98adantr 481 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐷:𝐵⟶(Base‘𝑅))
1093ad2ant1 1133 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝐷:𝐵⟶(Base‘𝑅))
11 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
125, 6matrcl 21759 . . . . . . . . . . 11 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1312simpld 495 . . . . . . . . . 10 (𝑋𝐵𝑁 ∈ Fin)
1413adantr 481 . . . . . . . . 9 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
152, 14anim12i 613 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
16153adant3 1132 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
17 ne0i 4294 . . . . . . . . . . 11 (𝐼𝑁𝑁 ≠ ∅)
181, 17anim12ci 614 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring))
1918anim1i 615 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)))
20193adant3 1132 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)))
21 simpl 483 . . . . . . . . 9 (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑍) = 𝑌)
22213ad2ant3 1135 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑋 · 𝑍) = 𝑌)
23 cramerimp.v . . . . . . . . 9 𝑉 = ((Base‘𝑅) ↑m 𝑁)
24 cramerimp.x . . . . . . . . 9 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
255, 6, 23, 24slesolvec 22028 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2620, 22, 25sylc 65 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝑍𝑉)
27 simpr 485 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
28273ad2ant1 1133 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝐼𝑁)
29 eqid 2736 . . . . . . . 8 (1r𝐴) = (1r𝐴)
305, 6, 23, 29ma1repvcl 21919 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
3116, 26, 28, 30syl12anc 835 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
3211, 31eqeltrid 2842 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝐸𝐵)
3310, 32ffvelcdmd 7036 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝐸) ∈ (Base‘𝑅))
34 simpr 485 . . . . 5 (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Unit‘𝑅))
35343ad2ant3 1135 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝑋) ∈ (Unit‘𝑅))
36 eqid 2736 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
37 cramerimp.q . . . . 5 / = (/r𝑅)
38 eqid 2736 . . . . 5 (.r𝑅) = (.r𝑅)
397, 36, 37, 38dvrcan3 20121 . . . 4 ((𝑅 ∈ Ring ∧ (𝐷𝐸) ∈ (Base‘𝑅) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (((𝐷𝐸)(.r𝑅)(𝐷𝑋)) / (𝐷𝑋)) = (𝐷𝐸))
403, 33, 35, 39syl3anc 1371 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((𝐷𝐸)(.r𝑅)(𝐷𝑋)) / (𝐷𝑋)) = (𝐷𝐸))
41 simpl 483 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
42413ad2ant1 1133 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → 𝑅 ∈ CRing)
437, 36unitcl 20088 . . . . . . 7 ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝐷𝑋) ∈ (Base‘𝑅))
4443adantl 482 . . . . . 6 (((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Base‘𝑅))
45443ad2ant3 1135 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝑋) ∈ (Base‘𝑅))
467, 38crngcom 19982 . . . . 5 ((𝑅 ∈ CRing ∧ (𝐷𝐸) ∈ (Base‘𝑅) ∧ (𝐷𝑋) ∈ (Base‘𝑅)) → ((𝐷𝐸)(.r𝑅)(𝐷𝑋)) = ((𝐷𝑋)(.r𝑅)(𝐷𝐸)))
4742, 33, 45, 46syl3anc 1371 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → ((𝐷𝐸)(.r𝑅)(𝐷𝑋)) = ((𝐷𝑋)(.r𝑅)(𝐷𝐸)))
4847oveq1d 7372 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((𝐷𝐸)(.r𝑅)(𝐷𝑋)) / (𝐷𝑋)) = (((𝐷𝑋)(.r𝑅)(𝐷𝐸)) / (𝐷𝑋)))
4914adantl 482 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑁 ∈ Fin)
5041adantr 481 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑅 ∈ CRing)
5127adantr 481 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝐼𝑁)
5249, 50, 513jca 1128 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁))
53523adant3 1132 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁))
545, 23, 11, 4cramerimplem1 22032 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))
5553, 26, 54syl2anc 584 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝐷𝐸) = (𝑍𝐼))
5640, 48, 553eqtr3rd 2785 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = (((𝐷𝑋)(.r𝑅)(𝐷𝐸)) / (𝐷𝑋)))
57 cramerimp.h . . . . 5 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
585, 6, 23, 11, 57, 24, 4, 38cramerimplem3 22034 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋)(.r𝑅)(𝐷𝐸)) = (𝐷𝐻))
59583adant3r 1181 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → ((𝐷𝑋)(.r𝑅)(𝐷𝐸)) = (𝐷𝐻))
6059oveq1d 7372 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (((𝐷𝑋)(.r𝑅)(𝐷𝐸)) / (𝐷𝑋)) = ((𝐷𝐻) / (𝐷𝑋)))
6156, 60eqtrd 2776 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = ((𝐷𝐻) / (𝐷𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  c0 4282  cop 4592  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134  1rcur 19913  Ringcrg 19964  CRingccrg 19965  Unitcui 20068  /rcdvr 20111   Mat cmat 21754   maVecMul cmvmul 21889   matRepV cmatrepV 21906   maDet cmdat 21933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-reverse 14647  df-s2 14737  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-efmnd 18679  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-gim 19049  df-cntz 19097  df-oppg 19124  df-symg 19149  df-pmtr 19224  df-psgn 19273  df-evpm 19274  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755  df-mvmul 21890  df-marrep 21907  df-marepv 21908  df-subma 21926  df-mdet 21934  df-minmar1 21984
This theorem is referenced by:  cramerlem1  22036
  Copyright terms: Public domain W3C validator