MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemuldiv Structured version   Visualization version   GIF version

Theorem lemuldiv 11514
Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
Assertion
Ref Expression
lemuldiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))

Proof of Theorem lemuldiv
StepHypRef Expression
1 ltdivmul2 11511 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐵 / 𝐶) < 𝐴𝐵 < (𝐴 · 𝐶)))
213com12 1117 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐵 / 𝐶) < 𝐴𝐵 < (𝐴 · 𝐶)))
32notbid 319 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ (𝐵 / 𝐶) < 𝐴 ↔ ¬ 𝐵 < (𝐴 · 𝐶)))
4 simp1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
5 gt0ne0 11099 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
653adant1 1124 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
7 redivcl 11353 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℝ)
86, 7syld3an3 1403 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐵 / 𝐶) ∈ ℝ)
983expb 1114 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
1093adant1 1124 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
114, 10lenltd 10780 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐵 / 𝐶) ↔ ¬ (𝐵 / 𝐶) < 𝐴))
12 remulcl 10616 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
13123adant2 1125 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
14 simp2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
1513, 14lenltd 10780 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ 𝐵 ↔ ¬ 𝐵 < (𝐴 · 𝐶)))
16153adant3r 1175 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵 ↔ ¬ 𝐵 < (𝐴 · 𝐶)))
173, 11, 163bitr4rd 313 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081  wcel 2107  wne 3021   class class class wbr 5063  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536   < clt 10669  cle 10670   / cdiv 11291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292
This theorem is referenced by:  lemuldiv2  11515  lemuldivd  12475  hashdvds  16107  nmoleub2lem3  23653  mbfi1fseqlem4  24253  mbfi1fseqlem5  24254  radcnvlem1  24935  pige3ALT  25039  fsumfldivdiaglem  25699  bposlem2  25794  bposlem3  25795  bposlem4  25796  bposlem7  25799  gausslemma2dlem1a  25874  lgsquadlem1  25889  lgsquadlem2  25890  chebbnd1lem2  25979  chebbnd1lem3  25980  dchrisum0flblem1  26017  mulog2sumlem2  26044  pntibndlem3  26101  lemuldiv3d  40407  lemuldiv4d  40408  lighneallem4a  43624  divge1b  44469
  Copyright terms: Public domain W3C validator