MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemuldiv Structured version   Visualization version   GIF version

Theorem lemuldiv 11523
Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
Assertion
Ref Expression
lemuldiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))

Proof of Theorem lemuldiv
StepHypRef Expression
1 ltdivmul2 11520 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐵 / 𝐶) < 𝐴𝐵 < (𝐴 · 𝐶)))
213com12 1119 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐵 / 𝐶) < 𝐴𝐵 < (𝐴 · 𝐶)))
32notbid 320 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ (𝐵 / 𝐶) < 𝐴 ↔ ¬ 𝐵 < (𝐴 · 𝐶)))
4 simp1 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
5 gt0ne0 11108 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
653adant1 1126 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
7 redivcl 11362 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℝ)
86, 7syld3an3 1405 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐵 / 𝐶) ∈ ℝ)
983expb 1116 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
1093adant1 1126 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
114, 10lenltd 10789 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐵 / 𝐶) ↔ ¬ (𝐵 / 𝐶) < 𝐴))
12 remulcl 10625 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
13123adant2 1127 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
14 simp2 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
1513, 14lenltd 10789 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ 𝐵 ↔ ¬ 𝐵 < (𝐴 · 𝐶)))
16153adant3r 1177 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵 ↔ ¬ 𝐵 < (𝐴 · 𝐶)))
173, 11, 163bitr4rd 314 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wcel 2113  wne 3019   class class class wbr 5069  (class class class)co 7159  cr 10539  0cc0 10540   · cmul 10545   < clt 10678  cle 10679   / cdiv 11300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301
This theorem is referenced by:  lemuldiv2  11524  lemuldivd  12483  hashdvds  16115  nmoleub2lem3  23722  mbfi1fseqlem4  24322  mbfi1fseqlem5  24323  radcnvlem1  25004  pige3ALT  25108  fsumfldivdiaglem  25769  bposlem2  25864  bposlem3  25865  bposlem4  25866  bposlem7  25869  gausslemma2dlem1a  25944  lgsquadlem1  25959  lgsquadlem2  25960  chebbnd1lem2  26049  chebbnd1lem3  26050  dchrisum0flblem1  26087  mulog2sumlem2  26114  pntibndlem3  26171  lemuldiv3d  40528  lemuldiv4d  40529  lighneallem4a  43780  divge1b  44574
  Copyright terms: Public domain W3C validator