Proof of Theorem lediv2
Step | Hyp | Ref
| Expression |
1 | | gt0ne0 11370 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ≠ 0) |
2 | | rereccl 11623 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈
ℝ) |
3 | 1, 2 | syldan 590 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (1 / 𝐵) ∈
ℝ) |
4 | 3 | 3ad2ant2 1132 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐵) ∈ ℝ) |
5 | | gt0ne0 11370 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ≠ 0) |
6 | | rereccl 11623 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℝ) |
7 | 5, 6 | syldan 590 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
8 | 7 | 3ad2ant1 1131 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐴) ∈ ℝ) |
9 | | simp3l 1199 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ) |
10 | | simp3r 1200 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 < 𝐶) |
11 | | lemul2 11758 |
. . 3
⊢ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
< 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
12 | 4, 8, 9, 10, 11 | syl112anc 1372 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
13 | | lerec 11788 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
14 | 13 | 3adant3 1130 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
15 | | recn 10892 |
. . . . . . 7
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) |
16 | | recn 10892 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ∈ ℂ) |
18 | 17, 1 | jca 511 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
19 | | divrec 11579 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
20 | 19 | 3expb 1118 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
21 | 15, 18, 20 | syl2an 595 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
22 | 21 | 3adant2 1129 |
. . . . 5
⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
23 | | recn 10892 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
24 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
25 | 24, 5 | jca 511 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
26 | | divrec 11579 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
27 | 26 | 3expb 1118 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
28 | 15, 25, 27 | syl2an 595 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
29 | 28 | 3adant3 1130 |
. . . . 5
⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
30 | 22, 29 | breq12d 5083 |
. . . 4
⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
31 | 30 | 3coml 1125 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
32 | 31 | 3adant3r 1179 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
33 | 12, 14, 32 | 3bitr4d 310 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) |