MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2 Structured version   Visualization version   GIF version

Theorem lediv2 11119
Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
lediv2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))

Proof of Theorem lediv2
StepHypRef Expression
1 gt0ne0 10699 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
2 rereccl 10949 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
31, 2syldan 579 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
433ad2ant2 1128 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐵) ∈ ℝ)
5 gt0ne0 10699 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6 rereccl 10949 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
75, 6syldan 579 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
873ad2ant1 1127 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐴) ∈ ℝ)
9 simp3l 1243 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
10 simp3r 1244 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 < 𝐶)
11 lemul2 11082 . . 3 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
124, 8, 9, 10, 11syl112anc 1480 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
13 lerec 11112 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
14133adant3 1126 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
15 recn 10232 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
16 recn 10232 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1716adantr 466 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
1817, 1jca 501 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
19 divrec 10907 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
20193expb 1113 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
2115, 18, 20syl2an 583 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
22213adant2 1125 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
23 recn 10232 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2423adantr 466 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2524, 5jca 501 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
26 divrec 10907 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
27263expb 1113 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
2815, 25, 27syl2an 583 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
29283adant3 1126 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
3022, 29breq12d 4800 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
31303coml 1121 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
32313adant3r 1195 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
3312, 14, 323bitr4d 300 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142  1c1 10143   · cmul 10147   < clt 10280  cle 10281   / cdiv 10890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891
This theorem is referenced by:  lediv2d  12099  nnledivrp  12145  isprm6  15633  divdenle  15664  gexexlem  18462  znidomb  20125  aaliou2b  24316  log2tlbnd  24893  fsumharmonic  24959  bcmono  25223  dchrisum0lem1  25426  selberg3lem1  25467  pntrsumo1  25475  pntibndlem3  25502  nndivlub  32794  stoweidlem42  40771  stoweidlem51  40780  stoweidlem59  40788
  Copyright terms: Public domain W3C validator