MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2 Structured version   Visualization version   GIF version

Theorem lediv2 12080
Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
lediv2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))

Proof of Theorem lediv2
StepHypRef Expression
1 gt0ne0 11650 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
2 rereccl 11907 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
31, 2syldan 591 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
433ad2ant2 1134 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐵) ∈ ℝ)
5 gt0ne0 11650 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6 rereccl 11907 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
75, 6syldan 591 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
873ad2ant1 1133 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐴) ∈ ℝ)
9 simp3l 1202 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
10 simp3r 1203 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 < 𝐶)
11 lemul2 12042 . . 3 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
124, 8, 9, 10, 11syl112anc 1376 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
13 lerec 12073 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
14133adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
15 recn 11165 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
16 recn 11165 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1716adantr 480 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
1817, 1jca 511 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
19 divrec 11860 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
20193expb 1120 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
2115, 18, 20syl2an 596 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
22213adant2 1131 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
23 recn 11165 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2423adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2524, 5jca 511 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
26 divrec 11860 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
27263expb 1120 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
2815, 25, 27syl2an 596 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
29283adant3 1132 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
3022, 29breq12d 5123 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
31303coml 1127 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
32313adant3r 1182 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
3312, 14, 323bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by:  lediv2d  13026  nnledivrp  13072  isprm6  16691  divdenle  16726  gexexlem  19789  znidomb  21478  aaliou2b  26256  log2tlbnd  26862  fsumharmonic  26929  bcmono  27195  dchrisum0lem1  27434  selberg3lem1  27475  pntrsumo1  27483  pntibndlem3  27510  nndivlub  36453  stoweidlem42  46047  stoweidlem51  46056  stoweidlem59  46064
  Copyright terms: Public domain W3C validator