MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2 Structured version   Visualization version   GIF version

Theorem lediv2 12105
Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
lediv2 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ถ / ๐ต) โ‰ค (๐ถ / ๐ด)))

Proof of Theorem lediv2
StepHypRef Expression
1 gt0ne0 11680 . . . . 5 ((๐ต โˆˆ โ„ โˆง 0 < ๐ต) โ†’ ๐ต โ‰  0)
2 rereccl 11933 . . . . 5 ((๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (1 / ๐ต) โˆˆ โ„)
31, 2syldan 590 . . . 4 ((๐ต โˆˆ โ„ โˆง 0 < ๐ต) โ†’ (1 / ๐ต) โˆˆ โ„)
433ad2ant2 1131 . . 3 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (1 / ๐ต) โˆˆ โ„)
5 gt0ne0 11680 . . . . 5 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ ๐ด โ‰  0)
6 rereccl 11933 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โ†’ (1 / ๐ด) โˆˆ โ„)
75, 6syldan 590 . . . 4 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ (1 / ๐ด) โˆˆ โ„)
873ad2ant1 1130 . . 3 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (1 / ๐ด) โˆˆ โ„)
9 simp3l 1198 . . 3 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ถ โˆˆ โ„)
10 simp3r 1199 . . 3 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ 0 < ๐ถ)
11 lemul2 12068 . . 3 (((1 / ๐ต) โˆˆ โ„ โˆง (1 / ๐ด) โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((1 / ๐ต) โ‰ค (1 / ๐ด) โ†” (๐ถ ยท (1 / ๐ต)) โ‰ค (๐ถ ยท (1 / ๐ด))))
124, 8, 9, 10, 11syl112anc 1371 . 2 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((1 / ๐ต) โ‰ค (1 / ๐ด) โ†” (๐ถ ยท (1 / ๐ต)) โ‰ค (๐ถ ยท (1 / ๐ด))))
13 lerec 12098 . . 3 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต)) โ†’ (๐ด โ‰ค ๐ต โ†” (1 / ๐ต) โ‰ค (1 / ๐ด)))
14133adant3 1129 . 2 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (1 / ๐ต) โ‰ค (1 / ๐ด)))
15 recn 11199 . . . . . . 7 (๐ถ โˆˆ โ„ โ†’ ๐ถ โˆˆ โ„‚)
16 recn 11199 . . . . . . . . 9 (๐ต โˆˆ โ„ โ†’ ๐ต โˆˆ โ„‚)
1716adantr 480 . . . . . . . 8 ((๐ต โˆˆ โ„ โˆง 0 < ๐ต) โ†’ ๐ต โˆˆ โ„‚)
1817, 1jca 511 . . . . . . 7 ((๐ต โˆˆ โ„ โˆง 0 < ๐ต) โ†’ (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0))
19 divrec 11889 . . . . . . . 8 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0) โ†’ (๐ถ / ๐ต) = (๐ถ ยท (1 / ๐ต)))
20193expb 1117 . . . . . . 7 ((๐ถ โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โ†’ (๐ถ / ๐ต) = (๐ถ ยท (1 / ๐ต)))
2115, 18, 20syl2an 595 . . . . . 6 ((๐ถ โˆˆ โ„ โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต)) โ†’ (๐ถ / ๐ต) = (๐ถ ยท (1 / ๐ต)))
22213adant2 1128 . . . . 5 ((๐ถ โˆˆ โ„ โˆง (๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต)) โ†’ (๐ถ / ๐ต) = (๐ถ ยท (1 / ๐ต)))
23 recn 11199 . . . . . . . . 9 (๐ด โˆˆ โ„ โ†’ ๐ด โˆˆ โ„‚)
2423adantr 480 . . . . . . . 8 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ ๐ด โˆˆ โ„‚)
2524, 5jca 511 . . . . . . 7 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ (๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0))
26 divrec 11889 . . . . . . . 8 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โ†’ (๐ถ / ๐ด) = (๐ถ ยท (1 / ๐ด)))
27263expb 1117 . . . . . . 7 ((๐ถ โˆˆ โ„‚ โˆง (๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0)) โ†’ (๐ถ / ๐ด) = (๐ถ ยท (1 / ๐ด)))
2815, 25, 27syl2an 595 . . . . . 6 ((๐ถ โˆˆ โ„ โˆง (๐ด โˆˆ โ„ โˆง 0 < ๐ด)) โ†’ (๐ถ / ๐ด) = (๐ถ ยท (1 / ๐ด)))
29283adant3 1129 . . . . 5 ((๐ถ โˆˆ โ„ โˆง (๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต)) โ†’ (๐ถ / ๐ด) = (๐ถ ยท (1 / ๐ด)))
3022, 29breq12d 5154 . . . 4 ((๐ถ โˆˆ โ„ โˆง (๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต)) โ†’ ((๐ถ / ๐ต) โ‰ค (๐ถ / ๐ด) โ†” (๐ถ ยท (1 / ๐ต)) โ‰ค (๐ถ ยท (1 / ๐ด))))
31303coml 1124 . . 3 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง ๐ถ โˆˆ โ„) โ†’ ((๐ถ / ๐ต) โ‰ค (๐ถ / ๐ด) โ†” (๐ถ ยท (1 / ๐ต)) โ‰ค (๐ถ ยท (1 / ๐ด))))
32313adant3r 1178 . 2 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ถ / ๐ต) โ‰ค (๐ถ / ๐ด) โ†” (๐ถ ยท (1 / ๐ต)) โ‰ค (๐ถ ยท (1 / ๐ด))))
3312, 14, 323bitr4d 311 1 (((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต) โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ถ / ๐ต) โ‰ค (๐ถ / ๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2934   class class class wbr 5141  (class class class)co 7404  โ„‚cc 11107  โ„cr 11108  0cc0 11109  1c1 11110   ยท cmul 11114   < clt 11249   โ‰ค cle 11250   / cdiv 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873
This theorem is referenced by:  lediv2d  13043  nnledivrp  13089  isprm6  16656  divdenle  16692  gexexlem  19770  znidomb  21452  aaliou2b  26227  log2tlbnd  26828  fsumharmonic  26895  bcmono  27161  dchrisum0lem1  27400  selberg3lem1  27441  pntrsumo1  27449  pntibndlem3  27476  nndivlub  35851  stoweidlem42  45311  stoweidlem51  45320  stoweidlem59  45328
  Copyright terms: Public domain W3C validator