Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd Structured version   Visualization version   GIF version

Theorem lfladd 37080
Description: Property of a linear functional. (lnfnaddi 30405 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lfladd.d 𝐷 = (Scalar‘𝑊)
lfladd.p = (+g𝐷)
lfladd.v 𝑉 = (Base‘𝑊)
lfladd.a + = (+g𝑊)
lfladd.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfladd ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))

Proof of Theorem lfladd
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp2 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
3 lfladd.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2738 . . . . 5 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 20150 . . . 4 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
763ad2ant1 1132 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
8 simp3l 1200 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
9 simp3r 1201 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
10 lfladd.v . . . 4 𝑉 = (Base‘𝑊)
11 lfladd.a . . . 4 + = (+g𝑊)
12 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 lfladd.p . . . 4 = (+g𝐷)
14 eqid 2738 . . . 4 (.r𝐷) = (.r𝐷)
15 lfladd.f . . . 4 𝐹 = (LFnl‘𝑊)
1610, 11, 3, 12, 4, 13, 14, 15lfli 37075 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
171, 2, 7, 8, 9, 16syl113anc 1381 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
1810, 3, 12, 5lmodvs1 20151 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
191, 8, 18syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
2019fvoveq1d 7297 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌)))
213lmodring 20131 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
22213ad2ant1 1132 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
233, 4, 10, 15lflcl 37078 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
24233adant3r 1180 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
254, 14, 5ringlidm 19810 . . . 4 ((𝐷 ∈ Ring ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2622, 24, 25syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2726oveq1d 7290 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
2817, 20, 273eqtr3d 2786 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  1rcur 19737  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  lfladdcl  37085  hdmaplna1  39921
  Copyright terms: Public domain W3C validator