Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β π β LMod) |
2 | | simp2 1138 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β πΊ β πΉ) |
3 | | lfladd.d |
. . . . 5
β’ π· = (Scalarβπ) |
4 | | eqid 2733 |
. . . . 5
β’
(Baseβπ·) =
(Baseβπ·) |
5 | | eqid 2733 |
. . . . 5
β’
(1rβπ·) = (1rβπ·) |
6 | 3, 4, 5 | lmod1cl 20499 |
. . . 4
β’ (π β LMod β
(1rβπ·)
β (Baseβπ·)) |
7 | 6 | 3ad2ant1 1134 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (1rβπ·) β (Baseβπ·)) |
8 | | simp3l 1202 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β π β π) |
9 | | simp3r 1203 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β π β π) |
10 | | lfladd.v |
. . . 4
β’ π = (Baseβπ) |
11 | | lfladd.a |
. . . 4
β’ + =
(+gβπ) |
12 | | eqid 2733 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
13 | | lfladd.p |
. . . 4
⒠⨣ =
(+gβπ·) |
14 | | eqid 2733 |
. . . 4
β’
(.rβπ·) = (.rβπ·) |
15 | | lfladd.f |
. . . 4
β’ πΉ = (LFnlβπ) |
16 | 10, 11, 3, 12, 4, 13, 14, 15 | lfli 37931 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ ((1rβπ·) β (Baseβπ·) β§ π β π β§ π β π)) β (πΊβ(((1rβπ·)(
Β·π βπ)π) + π)) = (((1rβπ·)(.rβπ·)(πΊβπ)) ⨣ (πΊβπ))) |
17 | 1, 2, 7, 8, 9, 16 | syl113anc 1383 |
. 2
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (πΊβ(((1rβπ·)(
Β·π βπ)π) + π)) = (((1rβπ·)(.rβπ·)(πΊβπ)) ⨣ (πΊβπ))) |
18 | 10, 3, 12, 5 | lmodvs1 20500 |
. . . 4
β’ ((π β LMod β§ π β π) β ((1rβπ·)(
Β·π βπ)π) = π) |
19 | 1, 8, 18 | syl2anc 585 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β ((1rβπ·)(
Β·π βπ)π) = π) |
20 | 19 | fvoveq1d 7431 |
. 2
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (πΊβ(((1rβπ·)(
Β·π βπ)π) + π)) = (πΊβ(π + π))) |
21 | 3 | lmodring 20479 |
. . . . 5
β’ (π β LMod β π· β Ring) |
22 | 21 | 3ad2ant1 1134 |
. . . 4
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β π· β Ring) |
23 | 3, 4, 10, 15 | lflcl 37934 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ β§ π β π) β (πΊβπ) β (Baseβπ·)) |
24 | 23 | 3adant3r 1182 |
. . . 4
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (πΊβπ) β (Baseβπ·)) |
25 | 4, 14, 5 | ringlidm 20086 |
. . . 4
β’ ((π· β Ring β§ (πΊβπ) β (Baseβπ·)) β ((1rβπ·)(.rβπ·)(πΊβπ)) = (πΊβπ)) |
26 | 22, 24, 25 | syl2anc 585 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β ((1rβπ·)(.rβπ·)(πΊβπ)) = (πΊβπ)) |
27 | 26 | oveq1d 7424 |
. 2
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (((1rβπ·)(.rβπ·)(πΊβπ)) ⨣ (πΊβπ)) = ((πΊβπ) ⨣ (πΊβπ))) |
28 | 17, 20, 27 | 3eqtr3d 2781 |
1
β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (πΊβ(π + π)) = ((πΊβπ) ⨣ (πΊβπ))) |