![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd | Structured version Visualization version GIF version |
Description: Property of a linear functional. (lnfnaddi 32072 analog.) (Contributed by NM, 18-Apr-2014.) |
Ref | Expression |
---|---|
lfladd.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lfladd.p | ⊢ ⨣ = (+g‘𝐷) |
lfladd.v | ⊢ 𝑉 = (Base‘𝑊) |
lfladd.a | ⊢ + = (+g‘𝑊) |
lfladd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lfladd | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
2 | simp2 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
3 | lfladd.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
4 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
5 | eqid 2735 | . . . . 5 ⊢ (1r‘𝐷) = (1r‘𝐷) | |
6 | 3, 4, 5 | lmod1cl 20904 | . . . 4 ⊢ (𝑊 ∈ LMod → (1r‘𝐷) ∈ (Base‘𝐷)) |
7 | 6 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (1r‘𝐷) ∈ (Base‘𝐷)) |
8 | simp3l 1200 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
9 | simp3r 1201 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | |
10 | lfladd.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
11 | lfladd.a | . . . 4 ⊢ + = (+g‘𝑊) | |
12 | eqid 2735 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
13 | lfladd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
14 | eqid 2735 | . . . 4 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
15 | lfladd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
16 | 10, 11, 3, 12, 4, 13, 14, 15 | lfli 39043 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ((1r‘𝐷) ∈ (Base‘𝐷) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) |
17 | 1, 2, 7, 8, 9, 16 | syl113anc 1381 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) |
18 | 10, 3, 12, 5 | lmodvs1 20905 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
19 | 1, 8, 18 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
20 | 19 | fvoveq1d 7453 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌))) |
21 | 3 | lmodring 20883 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
22 | 21 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Ring) |
23 | 3, 4, 10, 15 | lflcl 39046 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
24 | 23 | 3adant3r 1180 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
25 | 4, 14, 5 | ringlidm 20283 | . . . 4 ⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑋) ∈ (Base‘𝐷)) → ((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) = (𝐺‘𝑋)) |
26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) = (𝐺‘𝑋)) |
27 | 26 | oveq1d 7446 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
28 | 17, 20, 27 | 3eqtr3d 2783 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 1rcur 20199 Ringcrg 20251 LModclmod 20875 LFnlclfn 39039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lfl 39040 |
This theorem is referenced by: lfladdcl 39053 hdmaplna1 41890 |
Copyright terms: Public domain | W3C validator |