| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd | Structured version Visualization version GIF version | ||
| Description: Property of a linear functional. (lnfnaddi 32029 analog.) (Contributed by NM, 18-Apr-2014.) |
| Ref | Expression |
|---|---|
| lfladd.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lfladd.p | ⊢ ⨣ = (+g‘𝐷) |
| lfladd.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfladd.a | ⊢ + = (+g‘𝑊) |
| lfladd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lfladd | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
| 3 | lfladd.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (1r‘𝐷) = (1r‘𝐷) | |
| 6 | 3, 4, 5 | lmod1cl 20851 | . . . 4 ⊢ (𝑊 ∈ LMod → (1r‘𝐷) ∈ (Base‘𝐷)) |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (1r‘𝐷) ∈ (Base‘𝐷)) |
| 8 | simp3l 1202 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
| 9 | simp3r 1203 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | |
| 10 | lfladd.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | lfladd.a | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 13 | lfladd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
| 14 | eqid 2736 | . . . 4 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
| 15 | lfladd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 16 | 10, 11, 3, 12, 4, 13, 14, 15 | lfli 39084 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ((1r‘𝐷) ∈ (Base‘𝐷) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) |
| 17 | 1, 2, 7, 8, 9, 16 | syl113anc 1384 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) |
| 18 | 10, 3, 12, 5 | lmodvs1 20852 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
| 19 | 1, 8, 18 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
| 20 | 19 | fvoveq1d 7432 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌))) |
| 21 | 3 | lmodring 20830 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Ring) |
| 23 | 3, 4, 10, 15 | lflcl 39087 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
| 24 | 23 | 3adant3r 1182 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
| 25 | 4, 14, 5 | ringlidm 20234 | . . . 4 ⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑋) ∈ (Base‘𝐷)) → ((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) = (𝐺‘𝑋)) |
| 26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) = (𝐺‘𝑋)) |
| 27 | 26 | oveq1d 7425 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
| 28 | 17, 20, 27 | 3eqtr3d 2779 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 1rcur 20146 Ringcrg 20198 LModclmod 20822 LFnlclfn 39080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20824 df-lfl 39081 |
| This theorem is referenced by: lfladdcl 39094 hdmaplna1 41931 |
| Copyright terms: Public domain | W3C validator |