Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd Structured version   Visualization version   GIF version

Theorem lfladd 39048
Description: Property of a linear functional. (lnfnaddi 32072 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lfladd.d 𝐷 = (Scalar‘𝑊)
lfladd.p = (+g𝐷)
lfladd.v 𝑉 = (Base‘𝑊)
lfladd.a + = (+g𝑊)
lfladd.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfladd ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))

Proof of Theorem lfladd
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp2 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
3 lfladd.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 eqid 2735 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2735 . . . . 5 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 20904 . . . 4 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
763ad2ant1 1132 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
8 simp3l 1200 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
9 simp3r 1201 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
10 lfladd.v . . . 4 𝑉 = (Base‘𝑊)
11 lfladd.a . . . 4 + = (+g𝑊)
12 eqid 2735 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 lfladd.p . . . 4 = (+g𝐷)
14 eqid 2735 . . . 4 (.r𝐷) = (.r𝐷)
15 lfladd.f . . . 4 𝐹 = (LFnl‘𝑊)
1610, 11, 3, 12, 4, 13, 14, 15lfli 39043 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
171, 2, 7, 8, 9, 16syl113anc 1381 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
1810, 3, 12, 5lmodvs1 20905 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
191, 8, 18syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
2019fvoveq1d 7453 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌)))
213lmodring 20883 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
22213ad2ant1 1132 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
233, 4, 10, 15lflcl 39046 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
24233adant3r 1180 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
254, 14, 5ringlidm 20283 . . . 4 ((𝐷 ∈ Ring ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2622, 24, 25syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2726oveq1d 7446 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
2817, 20, 273eqtr3d 2783 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  1rcur 20199  Ringcrg 20251  LModclmod 20875  LFnlclfn 39039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lfl 39040
This theorem is referenced by:  lfladdcl  39053  hdmaplna1  41890
  Copyright terms: Public domain W3C validator