Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd Structured version   Visualization version   GIF version

Theorem lfladd 39032
Description: Property of a linear functional. (lnfnaddi 31945 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lfladd.d 𝐷 = (Scalar‘𝑊)
lfladd.p = (+g𝐷)
lfladd.v 𝑉 = (Base‘𝑊)
lfladd.a + = (+g𝑊)
lfladd.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfladd ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))

Proof of Theorem lfladd
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp2 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
3 lfladd.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2729 . . . . 5 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 20771 . . . 4 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
763ad2ant1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
8 simp3l 1202 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
9 simp3r 1203 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
10 lfladd.v . . . 4 𝑉 = (Base‘𝑊)
11 lfladd.a . . . 4 + = (+g𝑊)
12 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 lfladd.p . . . 4 = (+g𝐷)
14 eqid 2729 . . . 4 (.r𝐷) = (.r𝐷)
15 lfladd.f . . . 4 𝐹 = (LFnl‘𝑊)
1610, 11, 3, 12, 4, 13, 14, 15lfli 39027 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
171, 2, 7, 8, 9, 16syl113anc 1384 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
1810, 3, 12, 5lmodvs1 20772 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
191, 8, 18syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
2019fvoveq1d 7391 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌)))
213lmodring 20750 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
22213ad2ant1 1133 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
233, 4, 10, 15lflcl 39030 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
24233adant3r 1182 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
254, 14, 5ringlidm 20154 . . . 4 ((𝐷 ∈ Ring ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2622, 24, 25syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2726oveq1d 7384 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
2817, 20, 273eqtr3d 2772 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  1rcur 20066  Ringcrg 20118  LModclmod 20742  LFnlclfn 39023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-lfl 39024
This theorem is referenced by:  lfladdcl  39037  hdmaplna1  41874
  Copyright terms: Public domain W3C validator