Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd Structured version   Visualization version   GIF version

Theorem lfladd 39045
Description: Property of a linear functional. (lnfnaddi 31987 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lfladd.d 𝐷 = (Scalar‘𝑊)
lfladd.p = (+g𝐷)
lfladd.v 𝑉 = (Base‘𝑊)
lfladd.a + = (+g𝑊)
lfladd.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfladd ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))

Proof of Theorem lfladd
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp2 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
3 lfladd.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2729 . . . . 5 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 20792 . . . 4 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
763ad2ant1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
8 simp3l 1202 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
9 simp3r 1203 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
10 lfladd.v . . . 4 𝑉 = (Base‘𝑊)
11 lfladd.a . . . 4 + = (+g𝑊)
12 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 lfladd.p . . . 4 = (+g𝐷)
14 eqid 2729 . . . 4 (.r𝐷) = (.r𝐷)
15 lfladd.f . . . 4 𝐹 = (LFnl‘𝑊)
1610, 11, 3, 12, 4, 13, 14, 15lfli 39040 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
171, 2, 7, 8, 9, 16syl113anc 1384 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
1810, 3, 12, 5lmodvs1 20793 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
191, 8, 18syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
2019fvoveq1d 7371 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌)))
213lmodring 20771 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
22213ad2ant1 1133 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
233, 4, 10, 15lflcl 39043 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
24233adant3r 1182 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
254, 14, 5ringlidm 20154 . . . 4 ((𝐷 ∈ Ring ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2622, 24, 25syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2726oveq1d 7364 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
2817, 20, 273eqtr3d 2772 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  1rcur 20066  Ringcrg 20118  LModclmod 20763  LFnlclfn 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lfl 39037
This theorem is referenced by:  lfladdcl  39050  hdmaplna1  41886
  Copyright terms: Public domain W3C validator