Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd Structured version   Visualization version   GIF version

Theorem lfladd 36362
Description: Property of a linear functional. (lnfnaddi 29826 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lfladd.d 𝐷 = (Scalar‘𝑊)
lfladd.p = (+g𝐷)
lfladd.v 𝑉 = (Base‘𝑊)
lfladd.a + = (+g𝑊)
lfladd.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfladd ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))

Proof of Theorem lfladd
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp2 1134 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
3 lfladd.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 eqid 2798 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2798 . . . . 5 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 19654 . . . 4 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
763ad2ant1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
8 simp3l 1198 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
9 simp3r 1199 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
10 lfladd.v . . . 4 𝑉 = (Base‘𝑊)
11 lfladd.a . . . 4 + = (+g𝑊)
12 eqid 2798 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 lfladd.p . . . 4 = (+g𝐷)
14 eqid 2798 . . . 4 (.r𝐷) = (.r𝐷)
15 lfladd.f . . . 4 𝐹 = (LFnl‘𝑊)
1610, 11, 3, 12, 4, 13, 14, 15lfli 36357 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
171, 2, 7, 8, 9, 16syl113anc 1379 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)))
1810, 3, 12, 5lmodvs1 19655 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
191, 8, 18syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)( ·𝑠𝑊)𝑋) = 𝑋)
2019fvoveq1d 7157 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌)))
213lmodring 19635 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
22213ad2ant1 1130 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
233, 4, 10, 15lflcl 36360 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
24233adant3r 1178 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
254, 14, 5ringlidm 19317 . . . 4 ((𝐷 ∈ Ring ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2622, 24, 25syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((1r𝐷)(.r𝐷)(𝐺𝑋)) = (𝐺𝑋))
2726oveq1d 7150 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((1r𝐷)(.r𝐷)(𝐺𝑋)) (𝐺𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
2817, 20, 273eqtr3d 2841 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  1rcur 19244  Ringcrg 19290  LModclmod 19627  LFnlclfn 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lfl 36354
This theorem is referenced by:  lfladdcl  36367  hdmaplna1  39203
  Copyright terms: Public domain W3C validator