| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd | Structured version Visualization version GIF version | ||
| Description: Property of a linear functional. (lnfnaddi 31987 analog.) (Contributed by NM, 18-Apr-2014.) |
| Ref | Expression |
|---|---|
| lfladd.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lfladd.p | ⊢ ⨣ = (+g‘𝐷) |
| lfladd.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfladd.a | ⊢ + = (+g‘𝑊) |
| lfladd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lfladd | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
| 3 | lfladd.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (1r‘𝐷) = (1r‘𝐷) | |
| 6 | 3, 4, 5 | lmod1cl 20792 | . . . 4 ⊢ (𝑊 ∈ LMod → (1r‘𝐷) ∈ (Base‘𝐷)) |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (1r‘𝐷) ∈ (Base‘𝐷)) |
| 8 | simp3l 1202 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
| 9 | simp3r 1203 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | |
| 10 | lfladd.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | lfladd.a | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 13 | lfladd.p | . . . 4 ⊢ ⨣ = (+g‘𝐷) | |
| 14 | eqid 2729 | . . . 4 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
| 15 | lfladd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 16 | 10, 11, 3, 12, 4, 13, 14, 15 | lfli 39040 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ((1r‘𝐷) ∈ (Base‘𝐷) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) |
| 17 | 1, 2, 7, 8, 9, 16 | syl113anc 1384 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) |
| 18 | 10, 3, 12, 5 | lmodvs1 20793 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
| 19 | 1, 8, 18 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
| 20 | 19 | fvoveq1d 7371 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(((1r‘𝐷)( ·𝑠 ‘𝑊)𝑋) + 𝑌)) = (𝐺‘(𝑋 + 𝑌))) |
| 21 | 3 | lmodring 20771 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Ring) |
| 23 | 3, 4, 10, 15 | lflcl 39043 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
| 24 | 23 | 3adant3r 1182 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
| 25 | 4, 14, 5 | ringlidm 20154 | . . . 4 ⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑋) ∈ (Base‘𝐷)) → ((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) = (𝐺‘𝑋)) |
| 26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) = (𝐺‘𝑋)) |
| 27 | 26 | oveq1d 7364 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((1r‘𝐷)(.r‘𝐷)(𝐺‘𝑋)) ⨣ (𝐺‘𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
| 28 | 17, 20, 27 | 3eqtr3d 2772 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 1rcur 20066 Ringcrg 20118 LModclmod 20763 LFnlclfn 39036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20765 df-lfl 39037 |
| This theorem is referenced by: lfladdcl 39050 hdmaplna1 41886 |
| Copyright terms: Public domain | W3C validator |