Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcolem Structured version   Visualization version   GIF version

Theorem trlcolem 37307
Description: Lemma for trlco 37308. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
trlco.l = (le‘𝐾)
trlco.j = (join‘𝐾)
trlco.h 𝐻 = (LHyp‘𝐾)
trlco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlco.r 𝑅 = ((trL‘𝐾)‘𝑊)
trlcolem.m = (meet‘𝐾)
trlcolem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
trlcolem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trlcolem
StepHypRef Expression
1 simp1l 1177 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21hllatd 35945 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
3 simp3l 1181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
4 eqid 2778 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
5 trlcolem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 35870 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
8 simp1 1116 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp2r 1180 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
10 trlco.l . . . . . . . 8 = (le‘𝐾)
11 trlco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
12 trlco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
1310, 5, 11, 12ltrnat 36721 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
148, 9, 3, 13syl3anc 1351 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
154, 5atbase 35870 . . . . . 6 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
1614, 15syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ (Base‘𝐾))
17 trlco.j . . . . . 6 = (join‘𝐾)
184, 10, 17latlej1 17531 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → 𝑃 (𝑃 (𝐺𝑃)))
192, 7, 16, 18syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 (𝐺𝑃)))
204, 17, 5hlatjcl 35948 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
211, 3, 14, 20syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
22 simp2l 1179 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
234, 11, 12ltrncl 36706 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
248, 22, 16, 23syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
254, 10, 17latjlej1 17536 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
262, 7, 21, 24, 25syl13anc 1352 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
2719, 26mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
284, 17latjcl 17522 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
292, 7, 24, 28syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
304, 17latjcl 17522 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
312, 21, 24, 30syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
32 simp1r 1178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
334, 11lhpbase 36579 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
35 trlcolem.m . . . . 5 = (meet‘𝐾)
364, 10, 35latmlem1 17552 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
372, 29, 31, 34, 36syl13anc 1352 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
3827, 37mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
3911, 12ltrnco 37300 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
408, 22, 9, 39syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐺) ∈ 𝑇)
41 trlco.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
4210, 17, 35, 5, 11, 12, 41trlval2 36744 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4340, 42syld3an2 1391 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4410, 5, 11, 12ltrncoval 36726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
45443adant3r 1161 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
4645oveq2d 6994 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝐹𝐺)‘𝑃)) = (𝑃 (𝐹‘(𝐺𝑃))))
4746oveq1d 6993 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4843, 47eqtrd 2814 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4910, 5, 11, 12ltrnel 36720 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
509, 49syld3an2 1391 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
5110, 17, 35, 5, 11, 12, 41trlval2 36744 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
528, 22, 50, 51syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
5310, 17, 35, 5, 11, 12, 41trlval2 36744 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
549, 53syld3an2 1391 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
5552, 54oveq12d 6996 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)))
5610, 5, 11, 12ltrnat 36721 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
578, 22, 14, 56syl3anc 1351 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
584, 17, 5hlatjcl 35948 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
591, 14, 57, 58syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
604, 35latmcl 17523 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
612, 59, 34, 60syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
624, 35latmcl 17523 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
632, 21, 34, 62syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
644, 17latjcom 17530 . . . 4 ((𝐾 ∈ Lat ∧ (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
652, 61, 63, 64syl3anc 1351 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
664, 17latjcl 17522 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
672, 16, 24, 66syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
684, 10, 35latmle2 17548 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
692, 21, 34, 68syl3anc 1351 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
704, 10, 17, 35, 11lhpmod6i1 36620 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾)) ∧ ((𝑃 (𝐺𝑃)) 𝑊) 𝑊) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
718, 63, 67, 69, 70syl121anc 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
724, 17latjass 17566 . . . . . . 7 ((𝐾 ∈ Lat ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
732, 63, 16, 24, 72syl13anc 1352 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
744, 10, 17latlej2 17532 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
752, 7, 16, 74syl3anc 1351 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
764, 10, 17, 35, 11lhpmod2i2 36619 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) ∧ (𝐺𝑃) (𝑃 (𝐺𝑃))) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
778, 21, 16, 75, 76syl121anc 1355 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
78 eqid 2778 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
7910, 17, 78, 5, 11lhpjat1 36601 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
808, 50, 79syl2anc 576 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
8180oveq2d 6994 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (1.‘𝐾)))
82 hlol 35942 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
831, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
844, 35, 78olm11 35808 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8583, 21, 84syl2anc 576 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8677, 81, 853eqtrd 2818 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = (𝑃 (𝐺𝑃)))
8786oveq1d 6993 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8873, 87eqtr3d 2816 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8988oveq1d 6993 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9071, 89eqtrd 2814 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9155, 65, 903eqtrd 2818 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9238, 48, 913brtr4d 4962 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4930  ccom 5412  cfv 6190  (class class class)co 6978  Basecbs 16342  lecple 16431  joincjn 17415  meetcmee 17416  1.cp1 17509  Latclat 17516  OLcol 35755  Atomscatm 35844  HLchlt 35931  LHypclh 36565  LTrncltrn 36682  trLctrl 36739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-riotaBAD 35534
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-1st 7503  df-2nd 7504  df-undef 7744  df-map 8210  df-proset 17399  df-poset 17417  df-plt 17429  df-lub 17445  df-glb 17446  df-join 17447  df-meet 17448  df-p0 17510  df-p1 17511  df-lat 17517  df-clat 17579  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-llines 36079  df-lplanes 36080  df-lvols 36081  df-lines 36082  df-psubsp 36084  df-pmap 36085  df-padd 36377  df-lhyp 36569  df-laut 36570  df-ldil 36685  df-ltrn 36686  df-trl 36740
This theorem is referenced by:  trlco  37308
  Copyright terms: Public domain W3C validator