Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcolem Structured version   Visualization version   GIF version

Theorem trlcolem 40765
Description: Lemma for trlco 40766. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
trlco.l = (le‘𝐾)
trlco.j = (join‘𝐾)
trlco.h 𝐻 = (LHyp‘𝐾)
trlco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlco.r 𝑅 = ((trL‘𝐾)‘𝑊)
trlcolem.m = (meet‘𝐾)
trlcolem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
trlcolem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trlcolem
StepHypRef Expression
1 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21hllatd 39403 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
3 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
4 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
5 trlcolem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39328 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
8 simp1 1136 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
10 trlco.l . . . . . . . 8 = (le‘𝐾)
11 trlco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
12 trlco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
1310, 5, 11, 12ltrnat 40179 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
148, 9, 3, 13syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
154, 5atbase 39328 . . . . . 6 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
1614, 15syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ (Base‘𝐾))
17 trlco.j . . . . . 6 = (join‘𝐾)
184, 10, 17latlej1 18349 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → 𝑃 (𝑃 (𝐺𝑃)))
192, 7, 16, 18syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 (𝐺𝑃)))
204, 17, 5hlatjcl 39406 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
211, 3, 14, 20syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
22 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
234, 11, 12ltrncl 40164 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
248, 22, 16, 23syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
254, 10, 17latjlej1 18354 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
262, 7, 21, 24, 25syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
2719, 26mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
284, 17latjcl 18340 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
292, 7, 24, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
304, 17latjcl 18340 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
312, 21, 24, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
32 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
334, 11lhpbase 40037 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
35 trlcolem.m . . . . 5 = (meet‘𝐾)
364, 10, 35latmlem1 18370 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
372, 29, 31, 34, 36syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
3827, 37mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
3911, 12ltrnco 40758 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
408, 22, 9, 39syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐺) ∈ 𝑇)
41 trlco.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
4210, 17, 35, 5, 11, 12, 41trlval2 40202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4340, 42syld3an2 1413 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4410, 5, 11, 12ltrncoval 40184 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
45443adant3r 1182 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
4645oveq2d 7357 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝐹𝐺)‘𝑃)) = (𝑃 (𝐹‘(𝐺𝑃))))
4746oveq1d 7356 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4843, 47eqtrd 2766 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4910, 5, 11, 12ltrnel 40178 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
509, 49syld3an2 1413 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
5110, 17, 35, 5, 11, 12, 41trlval2 40202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
528, 22, 50, 51syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
5310, 17, 35, 5, 11, 12, 41trlval2 40202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
549, 53syld3an2 1413 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
5552, 54oveq12d 7359 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)))
5610, 5, 11, 12ltrnat 40179 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
578, 22, 14, 56syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
584, 17, 5hlatjcl 39406 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
591, 14, 57, 58syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
604, 35latmcl 18341 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
612, 59, 34, 60syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
624, 35latmcl 18341 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
632, 21, 34, 62syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
644, 17latjcom 18348 . . . 4 ((𝐾 ∈ Lat ∧ (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
652, 61, 63, 64syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
664, 17latjcl 18340 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
672, 16, 24, 66syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
684, 10, 35latmle2 18366 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
692, 21, 34, 68syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
704, 10, 17, 35, 11lhpmod6i1 40078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾)) ∧ ((𝑃 (𝐺𝑃)) 𝑊) 𝑊) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
718, 63, 67, 69, 70syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
724, 17latjass 18384 . . . . . . 7 ((𝐾 ∈ Lat ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
732, 63, 16, 24, 72syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
744, 10, 17latlej2 18350 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
752, 7, 16, 74syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
764, 10, 17, 35, 11lhpmod2i2 40077 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) ∧ (𝐺𝑃) (𝑃 (𝐺𝑃))) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
778, 21, 16, 75, 76syl121anc 1377 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
78 eqid 2731 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
7910, 17, 78, 5, 11lhpjat1 40059 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
808, 50, 79syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
8180oveq2d 7357 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (1.‘𝐾)))
82 hlol 39400 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
831, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
844, 35, 78olm11 39266 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8583, 21, 84syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8677, 81, 853eqtrd 2770 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = (𝑃 (𝐺𝑃)))
8786oveq1d 7356 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8873, 87eqtr3d 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8988oveq1d 7356 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9071, 89eqtrd 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9155, 65, 903eqtrd 2770 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9238, 48, 913brtr4d 5118 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  ccom 5615  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  meetcmee 18213  1.cp1 18323  Latclat 18332  OLcol 39213  Atomscatm 39302  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  trLctrl 40197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198
This theorem is referenced by:  trlco  40766
  Copyright terms: Public domain W3C validator