Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcolem Structured version   Visualization version   GIF version

Theorem trlcolem 40720
Description: Lemma for trlco 40721. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
trlco.l = (le‘𝐾)
trlco.j = (join‘𝐾)
trlco.h 𝐻 = (LHyp‘𝐾)
trlco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlco.r 𝑅 = ((trL‘𝐾)‘𝑊)
trlcolem.m = (meet‘𝐾)
trlcolem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
trlcolem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trlcolem
StepHypRef Expression
1 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21hllatd 39357 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
3 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
4 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
5 trlcolem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39282 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
8 simp1 1136 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
10 trlco.l . . . . . . . 8 = (le‘𝐾)
11 trlco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
12 trlco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
1310, 5, 11, 12ltrnat 40134 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
148, 9, 3, 13syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
154, 5atbase 39282 . . . . . 6 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
1614, 15syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ (Base‘𝐾))
17 trlco.j . . . . . 6 = (join‘𝐾)
184, 10, 17latlej1 18407 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → 𝑃 (𝑃 (𝐺𝑃)))
192, 7, 16, 18syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 (𝐺𝑃)))
204, 17, 5hlatjcl 39360 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
211, 3, 14, 20syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
22 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
234, 11, 12ltrncl 40119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
248, 22, 16, 23syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
254, 10, 17latjlej1 18412 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
262, 7, 21, 24, 25syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
2719, 26mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
284, 17latjcl 18398 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
292, 7, 24, 28syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
304, 17latjcl 18398 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
312, 21, 24, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
32 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
334, 11lhpbase 39992 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
35 trlcolem.m . . . . 5 = (meet‘𝐾)
364, 10, 35latmlem1 18428 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
372, 29, 31, 34, 36syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
3827, 37mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
3911, 12ltrnco 40713 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
408, 22, 9, 39syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐺) ∈ 𝑇)
41 trlco.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
4210, 17, 35, 5, 11, 12, 41trlval2 40157 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4340, 42syld3an2 1413 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4410, 5, 11, 12ltrncoval 40139 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
45443adant3r 1182 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
4645oveq2d 7403 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝐹𝐺)‘𝑃)) = (𝑃 (𝐹‘(𝐺𝑃))))
4746oveq1d 7402 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4843, 47eqtrd 2764 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4910, 5, 11, 12ltrnel 40133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
509, 49syld3an2 1413 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
5110, 17, 35, 5, 11, 12, 41trlval2 40157 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
528, 22, 50, 51syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
5310, 17, 35, 5, 11, 12, 41trlval2 40157 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
549, 53syld3an2 1413 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
5552, 54oveq12d 7405 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)))
5610, 5, 11, 12ltrnat 40134 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
578, 22, 14, 56syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
584, 17, 5hlatjcl 39360 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
591, 14, 57, 58syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
604, 35latmcl 18399 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
612, 59, 34, 60syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
624, 35latmcl 18399 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
632, 21, 34, 62syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
644, 17latjcom 18406 . . . 4 ((𝐾 ∈ Lat ∧ (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
652, 61, 63, 64syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
664, 17latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
672, 16, 24, 66syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
684, 10, 35latmle2 18424 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
692, 21, 34, 68syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
704, 10, 17, 35, 11lhpmod6i1 40033 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾)) ∧ ((𝑃 (𝐺𝑃)) 𝑊) 𝑊) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
718, 63, 67, 69, 70syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
724, 17latjass 18442 . . . . . . 7 ((𝐾 ∈ Lat ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
732, 63, 16, 24, 72syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
744, 10, 17latlej2 18408 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
752, 7, 16, 74syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
764, 10, 17, 35, 11lhpmod2i2 40032 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) ∧ (𝐺𝑃) (𝑃 (𝐺𝑃))) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
778, 21, 16, 75, 76syl121anc 1377 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
78 eqid 2729 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
7910, 17, 78, 5, 11lhpjat1 40014 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
808, 50, 79syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
8180oveq2d 7403 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (1.‘𝐾)))
82 hlol 39354 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
831, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
844, 35, 78olm11 39220 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8583, 21, 84syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8677, 81, 853eqtrd 2768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = (𝑃 (𝐺𝑃)))
8786oveq1d 7402 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8873, 87eqtr3d 2766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8988oveq1d 7402 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9071, 89eqtrd 2764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9155, 65, 903eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9238, 48, 913brtr4d 5139 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  ccom 5642  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  1.cp1 18383  Latclat 18390  OLcol 39167  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  trlco  40721
  Copyright terms: Public domain W3C validator