Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcolem Structured version   Visualization version   GIF version

Theorem trlcolem 40709
Description: Lemma for trlco 40710. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
trlco.l = (le‘𝐾)
trlco.j = (join‘𝐾)
trlco.h 𝐻 = (LHyp‘𝐾)
trlco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlco.r 𝑅 = ((trL‘𝐾)‘𝑊)
trlcolem.m = (meet‘𝐾)
trlcolem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
trlcolem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trlcolem
StepHypRef Expression
1 simp1l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21hllatd 39346 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
3 simp3l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
4 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
5 trlcolem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39271 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
8 simp1 1135 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp2r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
10 trlco.l . . . . . . . 8 = (le‘𝐾)
11 trlco.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
12 trlco.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
1310, 5, 11, 12ltrnat 40123 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
148, 9, 3, 13syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
154, 5atbase 39271 . . . . . 6 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
1614, 15syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ (Base‘𝐾))
17 trlco.j . . . . . 6 = (join‘𝐾)
184, 10, 17latlej1 18506 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → 𝑃 (𝑃 (𝐺𝑃)))
192, 7, 16, 18syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 (𝐺𝑃)))
204, 17, 5hlatjcl 39349 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
211, 3, 14, 20syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
22 simp2l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
234, 11, 12ltrncl 40108 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
248, 22, 16, 23syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
254, 10, 17latjlej1 18511 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
262, 7, 21, 24, 25syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑃 (𝐺𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃)))))
2719, 26mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
284, 17latjcl 18497 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
292, 7, 24, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
304, 17latjcl 18497 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
312, 21, 24, 30syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
32 simp1r 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
334, 11lhpbase 39981 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
35 trlcolem.m . . . . 5 = (meet‘𝐾)
364, 10, 35latmlem1 18527 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
372, 29, 31, 34, 36syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊)))
3827, 37mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
3911, 12ltrnco 40702 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
408, 22, 9, 39syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐺) ∈ 𝑇)
41 trlco.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
4210, 17, 35, 5, 11, 12, 41trlval2 40146 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4340, 42syld3an2 1410 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊))
4410, 5, 11, 12ltrncoval 40128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
45443adant3r 1180 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
4645oveq2d 7447 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝐹𝐺)‘𝑃)) = (𝑃 (𝐹‘(𝐺𝑃))))
4746oveq1d 7446 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝐹𝐺)‘𝑃)) 𝑊) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4843, 47eqtrd 2775 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
4910, 5, 11, 12ltrnel 40122 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
509, 49syld3an2 1410 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
5110, 17, 35, 5, 11, 12, 41trlval2 40146 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
528, 22, 50, 51syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊))
5310, 17, 35, 5, 11, 12, 41trlval2 40146 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
549, 53syld3an2 1410 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
5552, 54oveq12d 7449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)))
5610, 5, 11, 12ltrnat 40123 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
578, 22, 14, 56syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
584, 17, 5hlatjcl 39349 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
591, 14, 57, 58syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
604, 35latmcl 18498 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
612, 59, 34, 60syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾))
624, 35latmcl 18498 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
632, 21, 34, 62syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
644, 17latjcom 18505 . . . 4 ((𝐾 ∈ Lat ∧ (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
652, 61, 63, 64syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊) ((𝑃 (𝐺𝑃)) 𝑊)) = (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)))
664, 17latjcl 18497 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
672, 16, 24, 66syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
684, 10, 35latmle2 18523 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
692, 21, 34, 68syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) 𝑊)
704, 10, 17, 35, 11lhpmod6i1 40022 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ ((𝐺𝑃) (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾)) ∧ ((𝑃 (𝐺𝑃)) 𝑊) 𝑊) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
718, 63, 67, 69, 70syl121anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊))
724, 17latjass 18541 . . . . . . 7 ((𝐾 ∈ Lat ∧ (((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
732, 63, 16, 24, 72syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))))
744, 10, 17latlej2 18507 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
752, 7, 16, 74syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) (𝑃 (𝐺𝑃)))
764, 10, 17, 35, 11lhpmod2i2 40021 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) ∧ (𝐺𝑃) (𝑃 (𝐺𝑃))) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
778, 21, 16, 75, 76syl121anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))))
78 eqid 2735 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
7910, 17, 78, 5, 11lhpjat1 40003 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
808, 50, 79syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 (𝐺𝑃)) = (1.‘𝐾))
8180oveq2d 7447 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (𝑊 (𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (1.‘𝐾)))
82 hlol 39343 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
831, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
844, 35, 78olm11 39209 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8583, 21, 84syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐺𝑃)) (1.‘𝐾)) = (𝑃 (𝐺𝑃)))
8677, 81, 853eqtrd 2779 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) = (𝑃 (𝐺𝑃)))
8786oveq1d 7446 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) (𝐺𝑃)) (𝐹‘(𝐺𝑃))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8873, 87eqtr3d 2777 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) = ((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))))
8988oveq1d 7446 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((((𝑃 (𝐺𝑃)) 𝑊) ((𝐺𝑃) (𝐹‘(𝐺𝑃)))) 𝑊) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9071, 89eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐺𝑃)) 𝑊) (((𝐺𝑃) (𝐹‘(𝐺𝑃))) 𝑊)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9155, 65, 903eqtrd 2779 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝑅𝐺)) = (((𝑃 (𝐺𝑃)) (𝐹‘(𝐺𝑃))) 𝑊))
9238, 48, 913brtr4d 5180 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  ccom 5693  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  1.cp1 18482  Latclat 18489  OLcol 39156  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-undef 8297  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  trlco  40710
  Copyright terms: Public domain W3C validator