| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5 47519. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12520 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 5nn0 12519 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12721 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 2 | deccl 12721 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12517 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12721 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2735 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 9nn0 12523 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 9 | 5, 8 | deccl 12721 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
| 10 | 9, 5 | deccl 12721 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
| 11 | 1nn0 12515 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12721 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
| 13 | 8nn0 12522 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 14 | eqid 2735 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 0nn0 12514 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | 0p1e1 12360 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 17 | eqid 2735 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2735 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t6e36 12814 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
| 20 | 6p3e9 12398 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
| 21 | 5, 1, 5, 19, 20 | decaddi 12766 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
| 22 | 6cn 12329 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
| 23 | 5cn 12326 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
| 24 | 6t5e30 12813 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 25 | 22, 23, 24 | mulcomli 11242 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
| 26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12771 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
| 27 | 3cn 12319 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 28 | 27 | addlidi 11421 | . . . . . . 7 ⊢ (0 + 3) = 3 |
| 29 | 9, 15, 5, 26, 28 | decaddi 12766 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
| 30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12771 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
| 31 | 10, 15, 16, 30 | decsuc 12737 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
| 32 | 6t3e18 12811 | . . . . 5 ⊢ (6 · 3) = ;18 | |
| 33 | 22, 27, 32 | mulcomli 11242 | . . . 4 ⊢ (3 · 6) = ;18 |
| 34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12771 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
| 35 | 1p1e2 12363 | . . . 4 ⊢ (1 + 1) = 2 | |
| 36 | eqid 2735 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
| 37 | 10, 11, 35, 36 | decsuc 12737 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
| 38 | 8p3e11 12787 | . . 3 ⊢ (8 + 3) = ;11 | |
| 39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12767 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
| 40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12771 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 0cc0 11127 1c1 11128 · cmul 11132 2c2 12293 3c3 12294 5c5 12296 6c6 12297 8c8 12299 9c9 12300 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-sub 11466 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 |
| This theorem is referenced by: fmtno5lem4 47518 |
| Copyright terms: Public domain | W3C validator |