![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5 46215. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12492 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 5nn0 12491 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
3 | 1, 2 | deccl 12691 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 2 | deccl 12691 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12489 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12691 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2732 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 9nn0 12495 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
9 | 5, 8 | deccl 12691 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
10 | 9, 5 | deccl 12691 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
11 | 1nn0 12487 | . . . 4 ⊢ 1 ∈ ℕ0 | |
12 | 10, 11 | deccl 12691 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
13 | 8nn0 12494 | . . 3 ⊢ 8 ∈ ℕ0 | |
14 | eqid 2732 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 0nn0 12486 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | 0p1e1 12333 | . . . . 5 ⊢ (0 + 1) = 1 | |
17 | eqid 2732 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2732 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t6e36 12784 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
20 | 6p3e9 12371 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
21 | 5, 1, 5, 19, 20 | decaddi 12736 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
22 | 6cn 12302 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
23 | 5cn 12299 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
24 | 6t5e30 12783 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
25 | 22, 23, 24 | mulcomli 11222 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12741 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
27 | 3cn 12292 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
28 | 27 | addlidi 11401 | . . . . . . 7 ⊢ (0 + 3) = 3 |
29 | 9, 15, 5, 26, 28 | decaddi 12736 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12741 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
31 | 10, 15, 16, 30 | decsuc 12707 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
32 | 6t3e18 12781 | . . . . 5 ⊢ (6 · 3) = ;18 | |
33 | 22, 27, 32 | mulcomli 11222 | . . . 4 ⊢ (3 · 6) = ;18 |
34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12741 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
35 | 1p1e2 12336 | . . . 4 ⊢ (1 + 1) = 2 | |
36 | eqid 2732 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
37 | 10, 11, 35, 36 | decsuc 12707 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
38 | 8p3e11 12757 | . . 3 ⊢ (8 + 3) = ;11 | |
39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12737 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12741 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7408 0cc0 11109 1c1 11110 · cmul 11114 2c2 12266 3c3 12267 5c5 12269 6c6 12270 8c8 12272 9c9 12273 ;cdc 12676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-dec 12677 |
This theorem is referenced by: fmtno5lem4 46214 |
Copyright terms: Public domain | W3C validator |