Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5 44897. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12184 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 5nn0 12183 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
3 | 1, 2 | deccl 12381 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 2 | deccl 12381 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12181 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12381 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2738 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 9nn0 12187 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
9 | 5, 8 | deccl 12381 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
10 | 9, 5 | deccl 12381 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
11 | 1nn0 12179 | . . . 4 ⊢ 1 ∈ ℕ0 | |
12 | 10, 11 | deccl 12381 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
13 | 8nn0 12186 | . . 3 ⊢ 8 ∈ ℕ0 | |
14 | eqid 2738 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 0nn0 12178 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | 0p1e1 12025 | . . . . 5 ⊢ (0 + 1) = 1 | |
17 | eqid 2738 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2738 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t6e36 12474 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
20 | 6p3e9 12063 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
21 | 5, 1, 5, 19, 20 | decaddi 12426 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
22 | 6cn 11994 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
23 | 5cn 11991 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
24 | 6t5e30 12473 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
25 | 22, 23, 24 | mulcomli 10915 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12431 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
27 | 3cn 11984 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
28 | 27 | addid2i 11093 | . . . . . . 7 ⊢ (0 + 3) = 3 |
29 | 9, 15, 5, 26, 28 | decaddi 12426 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12431 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
31 | 10, 15, 16, 30 | decsuc 12397 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
32 | 6t3e18 12471 | . . . . 5 ⊢ (6 · 3) = ;18 | |
33 | 22, 27, 32 | mulcomli 10915 | . . . 4 ⊢ (3 · 6) = ;18 |
34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12431 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
35 | 1p1e2 12028 | . . . 4 ⊢ (1 + 1) = 2 | |
36 | eqid 2738 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
37 | 10, 11, 35, 36 | decsuc 12397 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
38 | 8p3e11 12447 | . . 3 ⊢ (8 + 3) = ;11 | |
39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12427 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12431 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 2c2 11958 3c3 11959 5c5 11961 6c6 11962 8c8 11964 9c9 11965 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: fmtno5lem4 44896 |
Copyright terms: Public domain | W3C validator |