![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5 47482. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12545 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 5nn0 12544 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
3 | 1, 2 | deccl 12746 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 2 | deccl 12746 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12542 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12746 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2735 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 9nn0 12548 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
9 | 5, 8 | deccl 12746 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
10 | 9, 5 | deccl 12746 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
11 | 1nn0 12540 | . . . 4 ⊢ 1 ∈ ℕ0 | |
12 | 10, 11 | deccl 12746 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
13 | 8nn0 12547 | . . 3 ⊢ 8 ∈ ℕ0 | |
14 | eqid 2735 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 0nn0 12539 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | 0p1e1 12386 | . . . . 5 ⊢ (0 + 1) = 1 | |
17 | eqid 2735 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2735 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t6e36 12839 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
20 | 6p3e9 12424 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
21 | 5, 1, 5, 19, 20 | decaddi 12791 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
22 | 6cn 12355 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
23 | 5cn 12352 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
24 | 6t5e30 12838 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
25 | 22, 23, 24 | mulcomli 11268 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12796 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
27 | 3cn 12345 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
28 | 27 | addlidi 11447 | . . . . . . 7 ⊢ (0 + 3) = 3 |
29 | 9, 15, 5, 26, 28 | decaddi 12791 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12796 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
31 | 10, 15, 16, 30 | decsuc 12762 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
32 | 6t3e18 12836 | . . . . 5 ⊢ (6 · 3) = ;18 | |
33 | 22, 27, 32 | mulcomli 11268 | . . . 4 ⊢ (3 · 6) = ;18 |
34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12796 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
35 | 1p1e2 12389 | . . . 4 ⊢ (1 + 1) = 2 | |
36 | eqid 2735 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
37 | 10, 11, 35, 36 | decsuc 12762 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
38 | 8p3e11 12812 | . . 3 ⊢ (8 + 3) = ;11 | |
39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12792 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12796 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 0cc0 11153 1c1 11154 · cmul 11158 2c2 12319 3c3 12320 5c5 12322 6c6 12323 8c8 12325 9c9 12326 ;cdc 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-dec 12732 |
This theorem is referenced by: fmtno5lem4 47481 |
Copyright terms: Public domain | W3C validator |