| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5 47541. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12405 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 5nn0 12404 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12606 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 2 | deccl 12606 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12402 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12606 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2729 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 9nn0 12408 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 9 | 5, 8 | deccl 12606 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
| 10 | 9, 5 | deccl 12606 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
| 11 | 1nn0 12400 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12606 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
| 13 | 8nn0 12407 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 14 | eqid 2729 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 0nn0 12399 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | 0p1e1 12245 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 17 | eqid 2729 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2729 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t6e36 12699 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
| 20 | 6p3e9 12283 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
| 21 | 5, 1, 5, 19, 20 | decaddi 12651 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
| 22 | 6cn 12219 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
| 23 | 5cn 12216 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
| 24 | 6t5e30 12698 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 25 | 22, 23, 24 | mulcomli 11124 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
| 26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12656 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
| 27 | 3cn 12209 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 28 | 27 | addlidi 11304 | . . . . . . 7 ⊢ (0 + 3) = 3 |
| 29 | 9, 15, 5, 26, 28 | decaddi 12651 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
| 30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12656 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
| 31 | 10, 15, 16, 30 | decsuc 12622 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
| 32 | 6t3e18 12696 | . . . . 5 ⊢ (6 · 3) = ;18 | |
| 33 | 22, 27, 32 | mulcomli 11124 | . . . 4 ⊢ (3 · 6) = ;18 |
| 34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12656 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
| 35 | 1p1e2 12248 | . . . 4 ⊢ (1 + 1) = 2 | |
| 36 | eqid 2729 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
| 37 | 10, 11, 35, 36 | decsuc 12622 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
| 38 | 8p3e11 12672 | . . 3 ⊢ (8 + 3) = ;11 | |
| 39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12652 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
| 40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12656 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 1c1 11010 · cmul 11014 2c2 12183 3c3 12184 5c5 12186 6c6 12187 8c8 12189 9c9 12190 ;cdc 12591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 |
| This theorem is referenced by: fmtno5lem4 47540 |
| Copyright terms: Public domain | W3C validator |