| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5 47538. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12527 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 5nn0 12526 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12728 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 2 | deccl 12728 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12524 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12728 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2736 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 9nn0 12530 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 9 | 5, 8 | deccl 12728 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
| 10 | 9, 5 | deccl 12728 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
| 11 | 1nn0 12522 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12728 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
| 13 | 8nn0 12529 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 14 | eqid 2736 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 0nn0 12521 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | 0p1e1 12367 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 17 | eqid 2736 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2736 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t6e36 12821 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
| 20 | 6p3e9 12405 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
| 21 | 5, 1, 5, 19, 20 | decaddi 12773 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
| 22 | 6cn 12336 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
| 23 | 5cn 12333 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
| 24 | 6t5e30 12820 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 25 | 22, 23, 24 | mulcomli 11249 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
| 26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12778 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
| 27 | 3cn 12326 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 28 | 27 | addlidi 11428 | . . . . . . 7 ⊢ (0 + 3) = 3 |
| 29 | 9, 15, 5, 26, 28 | decaddi 12773 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
| 30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12778 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
| 31 | 10, 15, 16, 30 | decsuc 12744 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
| 32 | 6t3e18 12818 | . . . . 5 ⊢ (6 · 3) = ;18 | |
| 33 | 22, 27, 32 | mulcomli 11249 | . . . 4 ⊢ (3 · 6) = ;18 |
| 34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12778 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
| 35 | 1p1e2 12370 | . . . 4 ⊢ (1 + 1) = 2 | |
| 36 | eqid 2736 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
| 37 | 10, 11, 35, 36 | decsuc 12744 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
| 38 | 8p3e11 12794 | . . 3 ⊢ (8 + 3) = ;11 | |
| 39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12774 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
| 40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12778 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 0cc0 11134 1c1 11135 · cmul 11139 2c2 12300 3c3 12301 5c5 12303 6c6 12304 8c8 12306 9c9 12307 ;cdc 12713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 |
| This theorem is referenced by: fmtno5lem4 47537 |
| Copyright terms: Public domain | W3C validator |