Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5 45009. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem1 | ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12254 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 5nn0 12253 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
3 | 1, 2 | deccl 12452 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 2 | deccl 12452 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12251 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12452 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2738 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 9nn0 12257 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
9 | 5, 8 | deccl 12452 | . . . . 5 ⊢ ;39 ∈ ℕ0 |
10 | 9, 5 | deccl 12452 | . . . 4 ⊢ ;;393 ∈ ℕ0 |
11 | 1nn0 12249 | . . . 4 ⊢ 1 ∈ ℕ0 | |
12 | 10, 11 | deccl 12452 | . . 3 ⊢ ;;;3931 ∈ ℕ0 |
13 | 8nn0 12256 | . . 3 ⊢ 8 ∈ ℕ0 | |
14 | eqid 2738 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 0nn0 12248 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | 0p1e1 12095 | . . . . 5 ⊢ (0 + 1) = 1 | |
17 | eqid 2738 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2738 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t6e36 12545 | . . . . . . . . 9 ⊢ (6 · 6) = ;36 | |
20 | 6p3e9 12133 | . . . . . . . . 9 ⊢ (6 + 3) = 9 | |
21 | 5, 1, 5, 19, 20 | decaddi 12497 | . . . . . . . 8 ⊢ ((6 · 6) + 3) = ;39 |
22 | 6cn 12064 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
23 | 5cn 12061 | . . . . . . . . 9 ⊢ 5 ∈ ℂ | |
24 | 6t5e30 12544 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
25 | 22, 23, 24 | mulcomli 10984 | . . . . . . . 8 ⊢ (5 · 6) = ;30 |
26 | 1, 1, 2, 18, 15, 5, 21, 25 | decmul1c 12502 | . . . . . . 7 ⊢ (;65 · 6) = ;;390 |
27 | 3cn 12054 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
28 | 27 | addid2i 11163 | . . . . . . 7 ⊢ (0 + 3) = 3 |
29 | 9, 15, 5, 26, 28 | decaddi 12497 | . . . . . 6 ⊢ ((;65 · 6) + 3) = ;;393 |
30 | 1, 3, 2, 17, 15, 5, 29, 25 | decmul1c 12502 | . . . . 5 ⊢ (;;655 · 6) = ;;;3930 |
31 | 10, 15, 16, 30 | decsuc 12468 | . . . 4 ⊢ ((;;655 · 6) + 1) = ;;;3931 |
32 | 6t3e18 12542 | . . . . 5 ⊢ (6 · 3) = ;18 | |
33 | 22, 27, 32 | mulcomli 10984 | . . . 4 ⊢ (3 · 6) = ;18 |
34 | 1, 4, 5, 14, 13, 11, 31, 33 | decmul1c 12502 | . . 3 ⊢ (;;;6553 · 6) = ;;;;39318 |
35 | 1p1e2 12098 | . . . 4 ⊢ (1 + 1) = 2 | |
36 | eqid 2738 | . . . 4 ⊢ ;;;3931 = ;;;3931 | |
37 | 10, 11, 35, 36 | decsuc 12468 | . . 3 ⊢ (;;;3931 + 1) = ;;;3932 |
38 | 8p3e11 12518 | . . 3 ⊢ (8 + 3) = ;11 | |
39 | 12, 13, 5, 34, 37, 11, 38 | decaddci 12498 | . 2 ⊢ ((;;;6553 · 6) + 3) = ;;;;39321 |
40 | 1, 6, 1, 7, 1, 5, 39, 19 | decmul1c 12502 | 1 ⊢ (;;;;65536 · 6) = ;;;;;393216 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 0cc0 10871 1c1 10872 · cmul 10876 2c2 12028 3c3 12029 5c5 12031 6c6 12032 8c8 12034 9c9 12035 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-dec 12438 |
This theorem is referenced by: fmtno5lem4 45008 |
Copyright terms: Public domain | W3C validator |