| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p4e10 | Structured version Visualization version GIF version | ||
| Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 6p4e10 | ⊢ (6 + 4) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12185 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | oveq2i 7352 | . . 3 ⊢ (6 + 4) = (6 + (3 + 1)) |
| 3 | 6cn 12211 | . . . 4 ⊢ 6 ∈ ℂ | |
| 4 | 3cn 12201 | . . . 4 ⊢ 3 ∈ ℂ | |
| 5 | ax-1cn 11059 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11117 | . . 3 ⊢ ((6 + 3) + 1) = (6 + (3 + 1)) |
| 7 | 2, 6 | eqtr4i 2757 | . 2 ⊢ (6 + 4) = ((6 + 3) + 1) |
| 8 | 6p3e9 12275 | . . 3 ⊢ (6 + 3) = 9 | |
| 9 | 8 | oveq1i 7351 | . 2 ⊢ ((6 + 3) + 1) = (9 + 1) |
| 10 | 9p1e10 12585 | . 2 ⊢ (9 + 1) = ;10 | |
| 11 | 7, 9, 10 | 3eqtri 2758 | 1 ⊢ (6 + 4) = ;10 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 3c3 12176 4c4 12177 6c6 12179 9c9 12182 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-dec 12584 |
| This theorem is referenced by: 6p5e11 12656 6t5e30 12690 2exp11 16996 1259lem4 17040 1259lem5 17041 2503prm 17046 4001lem1 17047 4001prm 17051 log2ub 26881 ex-bc 30424 hgt750lem2 34657 420gcd8e4 42039 3lexlogpow5ineq1 42087 5bc2eq10 42175 fmtno5lem4 47587 fmtno5faclem2 47611 m11nprm 47632 |
| Copyright terms: Public domain | W3C validator |