MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p4e10 Structured version   Visualization version   GIF version

Theorem 6p4e10 12803
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
6p4e10 (6 + 4) = 10

Proof of Theorem 6p4e10
StepHypRef Expression
1 df-4 12329 . . . 4 4 = (3 + 1)
21oveq2i 7442 . . 3 (6 + 4) = (6 + (3 + 1))
3 6cn 12355 . . . 4 6 ∈ ℂ
4 3cn 12345 . . . 4 3 ∈ ℂ
5 ax-1cn 11211 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11269 . . 3 ((6 + 3) + 1) = (6 + (3 + 1))
72, 6eqtr4i 2766 . 2 (6 + 4) = ((6 + 3) + 1)
8 6p3e9 12424 . . 3 (6 + 3) = 9
98oveq1i 7441 . 2 ((6 + 3) + 1) = (9 + 1)
10 9p1e10 12733 . 2 (9 + 1) = 10
117, 9, 103eqtri 2767 1 (6 + 4) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  3c3 12320  4c4 12321  6c6 12323  9c9 12326  cdc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12732
This theorem is referenced by:  6p5e11  12804  6t5e30  12838  2exp11  17124  1259lem4  17168  1259lem5  17169  2503prm  17174  4001lem1  17175  4001prm  17179  log2ub  27007  ex-bc  30481  hgt750lem2  34646  420gcd8e4  41988  3lexlogpow5ineq1  42036  5bc2eq10  42124  fmtno5lem4  47481  fmtno5faclem2  47505  m11nprm  47526
  Copyright terms: Public domain W3C validator