![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p4e10 | Structured version Visualization version GIF version |
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6p4e10 | ⊢ (6 + 4) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12301 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7425 | . . 3 ⊢ (6 + 4) = (6 + (3 + 1)) |
3 | 6cn 12327 | . . . 4 ⊢ 6 ∈ ℂ | |
4 | 3cn 12317 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 11190 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11248 | . . 3 ⊢ ((6 + 3) + 1) = (6 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2759 | . 2 ⊢ (6 + 4) = ((6 + 3) + 1) |
8 | 6p3e9 12396 | . . 3 ⊢ (6 + 3) = 9 | |
9 | 8 | oveq1i 7424 | . 2 ⊢ ((6 + 3) + 1) = (9 + 1) |
10 | 9p1e10 12703 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2760 | 1 ⊢ (6 + 4) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7414 0cc0 11132 1c1 11133 + caddc 11135 3c3 12292 4c4 12293 6c6 12295 9c9 12298 ;cdc 12701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-dec 12702 |
This theorem is referenced by: 6p5e11 12774 6t5e30 12808 2exp11 17052 1259lem4 17096 1259lem5 17097 2503prm 17102 4001lem1 17103 4001prm 17107 log2ub 26874 ex-bc 30255 hgt750lem2 34278 420gcd8e4 41471 3lexlogpow5ineq1 41519 5bc2eq10 41608 fmtno5lem4 46890 fmtno5faclem2 46914 m11nprm 46935 |
Copyright terms: Public domain | W3C validator |