![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p4e10 | Structured version Visualization version GIF version |
Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6p4e10 | ⊢ (6 + 4) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12225 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7373 | . . 3 ⊢ (6 + 4) = (6 + (3 + 1)) |
3 | 6cn 12251 | . . . 4 ⊢ 6 ∈ ℂ | |
4 | 3cn 12241 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 11116 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11172 | . . 3 ⊢ ((6 + 3) + 1) = (6 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2768 | . 2 ⊢ (6 + 4) = ((6 + 3) + 1) |
8 | 6p3e9 12320 | . . 3 ⊢ (6 + 3) = 9 | |
9 | 8 | oveq1i 7372 | . 2 ⊢ ((6 + 3) + 1) = (9 + 1) |
10 | 9p1e10 12627 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2769 | 1 ⊢ (6 + 4) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7362 0cc0 11058 1c1 11059 + caddc 11061 3c3 12216 4c4 12217 6c6 12219 9c9 12222 ;cdc 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-ltxr 11201 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-dec 12626 |
This theorem is referenced by: 6p5e11 12698 6t5e30 12732 2exp11 16969 1259lem4 17013 1259lem5 17014 2503prm 17019 4001lem1 17020 4001prm 17024 log2ub 26315 ex-bc 29438 hgt750lem2 33305 420gcd8e4 40492 3lexlogpow5ineq1 40540 5bc2eq10 40579 fmtno5lem4 45822 fmtno5faclem2 45846 m11nprm 45867 |
Copyright terms: Public domain | W3C validator |