![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version |
Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp8 | ⊢ (2↑8) = ;;256 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12488 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 12490 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2 | nn0cni 12483 | . . 3 ⊢ 4 ∈ ℂ |
4 | 2cn 12286 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4t2e8 12379 | . . 3 ⊢ (4 · 2) = 8 | |
6 | 3, 4, 5 | mulcomli 11222 | . 2 ⊢ (2 · 4) = 8 |
7 | 2exp4 17017 | . 2 ⊢ (2↑4) = ;16 | |
8 | 1nn0 12487 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 6nn0 12492 | . . . 4 ⊢ 6 ∈ ℕ0 | |
10 | 8, 9 | deccl 12691 | . . 3 ⊢ ;16 ∈ ℕ0 |
11 | eqid 2732 | . . 3 ⊢ ;16 = ;16 | |
12 | 9nn0 12495 | . . 3 ⊢ 9 ∈ ℕ0 | |
13 | 10 | nn0cni 12483 | . . . . 5 ⊢ ;16 ∈ ℂ |
14 | 13 | mulridi 11217 | . . . 4 ⊢ (;16 · 1) = ;16 |
15 | 1p1e2 12336 | . . . 4 ⊢ (1 + 1) = 2 | |
16 | 5nn0 12491 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 9cn 12311 | . . . . 5 ⊢ 9 ∈ ℂ | |
18 | 6cn 12302 | . . . . 5 ⊢ 6 ∈ ℂ | |
19 | 9p6e15 12767 | . . . . 5 ⊢ (9 + 6) = ;15 | |
20 | 17, 18, 19 | addcomli 11405 | . . . 4 ⊢ (6 + 9) = ;15 |
21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 12737 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
22 | 3nn0 12489 | . . . 4 ⊢ 3 ∈ ℕ0 | |
23 | 18 | mullidi 11218 | . . . . . 6 ⊢ (1 · 6) = 6 |
24 | 23 | oveq1i 7418 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
25 | 6p3e9 12371 | . . . . 5 ⊢ (6 + 3) = 9 | |
26 | 24, 25 | eqtri 2760 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
27 | 6t6e36 12784 | . . . 4 ⊢ (6 · 6) = ;36 | |
28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 12741 | . . 3 ⊢ (;16 · 6) = ;96 |
29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 12742 | . 2 ⊢ (;16 · ;16) = ;;256 |
30 | 1, 2, 6, 7, 29 | numexp2x 17011 | 1 ⊢ (2↑8) = ;;256 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7408 1c1 11110 + caddc 11112 · cmul 11114 2c2 12266 3c3 12267 4c4 12268 5c5 12269 6c6 12270 8c8 12272 9c9 12273 ;cdc 12676 ↑cexp 14026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-seq 13966 df-exp 14027 |
This theorem is referenced by: 2exp11 17022 2exp16 17023 2503lem1 17069 quart1lem 26357 quart1 26358 lcmineqlem 40912 aks4d1p1 40936 fmtno3 46209 fmtno4sqrt 46229 |
Copyright terms: Public domain | W3C validator |