Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version |
Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp8 | ⊢ (2↑8) = ;;256 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12300 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 12302 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2 | nn0cni 12295 | . . 3 ⊢ 4 ∈ ℂ |
4 | 2cn 12098 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4t2e8 12191 | . . 3 ⊢ (4 · 2) = 8 | |
6 | 3, 4, 5 | mulcomli 11034 | . 2 ⊢ (2 · 4) = 8 |
7 | 2exp4 16835 | . 2 ⊢ (2↑4) = ;16 | |
8 | 1nn0 12299 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 6nn0 12304 | . . . 4 ⊢ 6 ∈ ℕ0 | |
10 | 8, 9 | deccl 12502 | . . 3 ⊢ ;16 ∈ ℕ0 |
11 | eqid 2736 | . . 3 ⊢ ;16 = ;16 | |
12 | 9nn0 12307 | . . 3 ⊢ 9 ∈ ℕ0 | |
13 | 10 | nn0cni 12295 | . . . . 5 ⊢ ;16 ∈ ℂ |
14 | 13 | mulid1i 11029 | . . . 4 ⊢ (;16 · 1) = ;16 |
15 | 1p1e2 12148 | . . . 4 ⊢ (1 + 1) = 2 | |
16 | 5nn0 12303 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 9cn 12123 | . . . . 5 ⊢ 9 ∈ ℂ | |
18 | 6cn 12114 | . . . . 5 ⊢ 6 ∈ ℂ | |
19 | 9p6e15 12578 | . . . . 5 ⊢ (9 + 6) = ;15 | |
20 | 17, 18, 19 | addcomli 11217 | . . . 4 ⊢ (6 + 9) = ;15 |
21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 12548 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
22 | 3nn0 12301 | . . . 4 ⊢ 3 ∈ ℕ0 | |
23 | 18 | mulid2i 11030 | . . . . . 6 ⊢ (1 · 6) = 6 |
24 | 23 | oveq1i 7317 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
25 | 6p3e9 12183 | . . . . 5 ⊢ (6 + 3) = 9 | |
26 | 24, 25 | eqtri 2764 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
27 | 6t6e36 12595 | . . . 4 ⊢ (6 · 6) = ;36 | |
28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 12552 | . . 3 ⊢ (;16 · 6) = ;96 |
29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 12553 | . 2 ⊢ (;16 · ;16) = ;;256 |
30 | 1, 2, 6, 7, 29 | numexp2x 16829 | 1 ⊢ (2↑8) = ;;256 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 1c1 10922 + caddc 10924 · cmul 10926 2c2 12078 3c3 12079 4c4 12080 5c5 12081 6c6 12082 8c8 12084 9c9 12085 ;cdc 12487 ↑cexp 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-seq 13772 df-exp 13833 |
This theorem is referenced by: 2exp11 16840 2exp16 16841 2503lem1 16887 quart1lem 26054 quart1 26055 lcmineqlem 40260 aks4d1p1 40284 fmtno3 45247 fmtno4sqrt 45267 |
Copyright terms: Public domain | W3C validator |