| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version | ||
| Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2exp8 | ⊢ (2↑8) = ;;256 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12523 | . 2 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 12525 | . 2 ⊢ 4 ∈ ℕ0 | |
| 3 | 2 | nn0cni 12518 | . . 3 ⊢ 4 ∈ ℂ |
| 4 | 2cn 12320 | . . 3 ⊢ 2 ∈ ℂ | |
| 5 | 4t2e8 12413 | . . 3 ⊢ (4 · 2) = 8 | |
| 6 | 3, 4, 5 | mulcomli 11249 | . 2 ⊢ (2 · 4) = 8 |
| 7 | 2exp4 17109 | . 2 ⊢ (2↑4) = ;16 | |
| 8 | 1nn0 12522 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 9 | 6nn0 12527 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12728 | . . 3 ⊢ ;16 ∈ ℕ0 |
| 11 | eqid 2736 | . . 3 ⊢ ;16 = ;16 | |
| 12 | 9nn0 12530 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 13 | 10 | nn0cni 12518 | . . . . 5 ⊢ ;16 ∈ ℂ |
| 14 | 13 | mulridi 11244 | . . . 4 ⊢ (;16 · 1) = ;16 |
| 15 | 1p1e2 12370 | . . . 4 ⊢ (1 + 1) = 2 | |
| 16 | 5nn0 12526 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 17 | 9cn 12345 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 18 | 6cn 12336 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 19 | 9p6e15 12804 | . . . . 5 ⊢ (9 + 6) = ;15 | |
| 20 | 17, 18, 19 | addcomli 11432 | . . . 4 ⊢ (6 + 9) = ;15 |
| 21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 12774 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
| 22 | 3nn0 12524 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 23 | 18 | mullidi 11245 | . . . . . 6 ⊢ (1 · 6) = 6 |
| 24 | 23 | oveq1i 7420 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
| 25 | 6p3e9 12405 | . . . . 5 ⊢ (6 + 3) = 9 | |
| 26 | 24, 25 | eqtri 2759 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
| 27 | 6t6e36 12821 | . . . 4 ⊢ (6 · 6) = ;36 | |
| 28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 12778 | . . 3 ⊢ (;16 · 6) = ;96 |
| 29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 12779 | . 2 ⊢ (;16 · ;16) = ;;256 |
| 30 | 1, 2, 6, 7, 29 | numexp2x 17103 | 1 ⊢ (2↑8) = ;;256 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 + caddc 11137 · cmul 11139 2c2 12300 3c3 12301 4c4 12302 5c5 12303 6c6 12304 8c8 12306 9c9 12307 ;cdc 12713 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: 2exp11 17114 2exp16 17115 2503lem1 17161 quart1lem 26822 quart1 26823 lcmineqlem 42070 aks4d1p1 42094 fmtno3 47532 fmtno4sqrt 47552 |
| Copyright terms: Public domain | W3C validator |