Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version |
Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp8 | ⊢ (2↑8) = ;;256 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12233 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 12235 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2 | nn0cni 12228 | . . 3 ⊢ 4 ∈ ℂ |
4 | 2cn 12031 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4t2e8 12124 | . . 3 ⊢ (4 · 2) = 8 | |
6 | 3, 4, 5 | mulcomli 10968 | . 2 ⊢ (2 · 4) = 8 |
7 | 2exp4 16767 | . 2 ⊢ (2↑4) = ;16 | |
8 | 1nn0 12232 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 6nn0 12237 | . . . 4 ⊢ 6 ∈ ℕ0 | |
10 | 8, 9 | deccl 12434 | . . 3 ⊢ ;16 ∈ ℕ0 |
11 | eqid 2739 | . . 3 ⊢ ;16 = ;16 | |
12 | 9nn0 12240 | . . 3 ⊢ 9 ∈ ℕ0 | |
13 | 10 | nn0cni 12228 | . . . . 5 ⊢ ;16 ∈ ℂ |
14 | 13 | mulid1i 10963 | . . . 4 ⊢ (;16 · 1) = ;16 |
15 | 1p1e2 12081 | . . . 4 ⊢ (1 + 1) = 2 | |
16 | 5nn0 12236 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 9cn 12056 | . . . . 5 ⊢ 9 ∈ ℂ | |
18 | 6cn 12047 | . . . . 5 ⊢ 6 ∈ ℂ | |
19 | 9p6e15 12510 | . . . . 5 ⊢ (9 + 6) = ;15 | |
20 | 17, 18, 19 | addcomli 11150 | . . . 4 ⊢ (6 + 9) = ;15 |
21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 12480 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
22 | 3nn0 12234 | . . . 4 ⊢ 3 ∈ ℕ0 | |
23 | 18 | mulid2i 10964 | . . . . . 6 ⊢ (1 · 6) = 6 |
24 | 23 | oveq1i 7278 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
25 | 6p3e9 12116 | . . . . 5 ⊢ (6 + 3) = 9 | |
26 | 24, 25 | eqtri 2767 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
27 | 6t6e36 12527 | . . . 4 ⊢ (6 · 6) = ;36 | |
28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 12484 | . . 3 ⊢ (;16 · 6) = ;96 |
29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 12485 | . 2 ⊢ (;16 · ;16) = ;;256 |
30 | 1, 2, 6, 7, 29 | numexp2x 16761 | 1 ⊢ (2↑8) = ;;256 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7268 1c1 10856 + caddc 10858 · cmul 10860 2c2 12011 3c3 12012 4c4 12013 5c5 12014 6c6 12015 8c8 12017 9c9 12018 ;cdc 12419 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-seq 13703 df-exp 13764 |
This theorem is referenced by: 2exp11 16772 2exp16 16773 2503lem1 16819 quart1lem 25986 quart1 25987 lcmineqlem 40040 aks4d1p1 40064 fmtno3 44955 fmtno4sqrt 44975 |
Copyright terms: Public domain | W3C validator |