| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version | ||
| Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2exp8 | ⊢ (2↑8) = ;;256 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12409 | . 2 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 12411 | . 2 ⊢ 4 ∈ ℕ0 | |
| 3 | 2 | nn0cni 12404 | . . 3 ⊢ 4 ∈ ℂ |
| 4 | 2cn 12211 | . . 3 ⊢ 2 ∈ ℂ | |
| 5 | 4t2e8 12299 | . . 3 ⊢ (4 · 2) = 8 | |
| 6 | 3, 4, 5 | mulcomli 11132 | . 2 ⊢ (2 · 4) = 8 |
| 7 | 2exp4 17003 | . 2 ⊢ (2↑4) = ;16 | |
| 8 | 1nn0 12408 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 9 | 6nn0 12413 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12613 | . . 3 ⊢ ;16 ∈ ℕ0 |
| 11 | eqid 2733 | . . 3 ⊢ ;16 = ;16 | |
| 12 | 9nn0 12416 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 13 | 10 | nn0cni 12404 | . . . . 5 ⊢ ;16 ∈ ℂ |
| 14 | 13 | mulridi 11127 | . . . 4 ⊢ (;16 · 1) = ;16 |
| 15 | 1p1e2 12256 | . . . 4 ⊢ (1 + 1) = 2 | |
| 16 | 5nn0 12412 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 17 | 9cn 12236 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 18 | 6cn 12227 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 19 | 9p6e15 12689 | . . . . 5 ⊢ (9 + 6) = ;15 | |
| 20 | 17, 18, 19 | addcomli 11316 | . . . 4 ⊢ (6 + 9) = ;15 |
| 21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 12659 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
| 22 | 3nn0 12410 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 23 | 18 | mullidi 11128 | . . . . . 6 ⊢ (1 · 6) = 6 |
| 24 | 23 | oveq1i 7365 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
| 25 | 6p3e9 12291 | . . . . 5 ⊢ (6 + 3) = 9 | |
| 26 | 24, 25 | eqtri 2756 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
| 27 | 6t6e36 12706 | . . . 4 ⊢ (6 · 6) = ;36 | |
| 28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 12663 | . . 3 ⊢ (;16 · 6) = ;96 |
| 29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 12664 | . 2 ⊢ (;16 · ;16) = ;;256 |
| 30 | 1, 2, 6, 7, 29 | numexp2x 16997 | 1 ⊢ (2↑8) = ;;256 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 1c1 11018 + caddc 11020 · cmul 11022 2c2 12191 3c3 12192 4c4 12193 5c5 12194 6c6 12195 8c8 12197 9c9 12198 ;cdc 12598 ↑cexp 13975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-seq 13916 df-exp 13976 |
| This theorem is referenced by: 2exp11 17008 2exp16 17009 2503lem1 17055 quart1lem 26812 quart1 26813 lcmineqlem 42218 aks4d1p1 42242 fmtno3 47713 fmtno4sqrt 47733 |
| Copyright terms: Public domain | W3C validator |