![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version |
Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp8 | ⊢ (2↑8) = ;;256 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12488 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 12490 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2 | nn0cni 12483 | . . 3 ⊢ 4 ∈ ℂ |
4 | 2cn 12286 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4t2e8 12379 | . . 3 ⊢ (4 · 2) = 8 | |
6 | 3, 4, 5 | mulcomli 11222 | . 2 ⊢ (2 · 4) = 8 |
7 | 2exp4 17023 | . 2 ⊢ (2↑4) = ;16 | |
8 | 1nn0 12487 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 6nn0 12492 | . . . 4 ⊢ 6 ∈ ℕ0 | |
10 | 8, 9 | deccl 12691 | . . 3 ⊢ ;16 ∈ ℕ0 |
11 | eqid 2724 | . . 3 ⊢ ;16 = ;16 | |
12 | 9nn0 12495 | . . 3 ⊢ 9 ∈ ℕ0 | |
13 | 10 | nn0cni 12483 | . . . . 5 ⊢ ;16 ∈ ℂ |
14 | 13 | mulridi 11217 | . . . 4 ⊢ (;16 · 1) = ;16 |
15 | 1p1e2 12336 | . . . 4 ⊢ (1 + 1) = 2 | |
16 | 5nn0 12491 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 9cn 12311 | . . . . 5 ⊢ 9 ∈ ℂ | |
18 | 6cn 12302 | . . . . 5 ⊢ 6 ∈ ℂ | |
19 | 9p6e15 12767 | . . . . 5 ⊢ (9 + 6) = ;15 | |
20 | 17, 18, 19 | addcomli 11405 | . . . 4 ⊢ (6 + 9) = ;15 |
21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 12737 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
22 | 3nn0 12489 | . . . 4 ⊢ 3 ∈ ℕ0 | |
23 | 18 | mullidi 11218 | . . . . . 6 ⊢ (1 · 6) = 6 |
24 | 23 | oveq1i 7412 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
25 | 6p3e9 12371 | . . . . 5 ⊢ (6 + 3) = 9 | |
26 | 24, 25 | eqtri 2752 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
27 | 6t6e36 12784 | . . . 4 ⊢ (6 · 6) = ;36 | |
28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 12741 | . . 3 ⊢ (;16 · 6) = ;96 |
29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 12742 | . 2 ⊢ (;16 · ;16) = ;;256 |
30 | 1, 2, 6, 7, 29 | numexp2x 17017 | 1 ⊢ (2↑8) = ;;256 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7402 1c1 11108 + caddc 11110 · cmul 11112 2c2 12266 3c3 12267 4c4 12268 5c5 12269 6c6 12270 8c8 12272 9c9 12273 ;cdc 12676 ↑cexp 14028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-seq 13968 df-exp 14029 |
This theorem is referenced by: 2exp11 17028 2exp16 17029 2503lem1 17075 quart1lem 26727 quart1 26728 lcmineqlem 41423 aks4d1p1 41447 fmtno3 46764 fmtno4sqrt 46784 |
Copyright terms: Public domain | W3C validator |