| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | abvfval.a | . . . 4
⊢ 𝐴 = (AbsVal‘𝑅) | 
| 2 |  | abvfval.b | . . . 4
⊢ 𝐵 = (Base‘𝑅) | 
| 3 |  | abvfval.p | . . . 4
⊢  + =
(+g‘𝑅) | 
| 4 |  | abvfval.t | . . . 4
⊢  · =
(.r‘𝑅) | 
| 5 |  | abvfval.z | . . . 4
⊢  0 =
(0g‘𝑅) | 
| 6 | 1, 2, 3, 4, 5 | abvfval 20812 | . . 3
⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | 
| 7 | 6 | eleq2d 2826 | . 2
⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ 𝐹 ∈ {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))})) | 
| 8 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | 
| 9 | 8 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 0 ↔ (𝐹‘𝑥) = 0)) | 
| 10 | 9 | bibi1d 343 | . . . . . 6
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ))) | 
| 11 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦))) | 
| 12 |  | fveq1 6904 | . . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | 
| 13 | 8, 12 | oveq12d 7450 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) · (𝑓‘𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) | 
| 14 | 11, 13 | eqeq12d 2752 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)))) | 
| 15 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦))) | 
| 16 | 8, 12 | oveq12d 7450 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) + (𝑓‘𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) | 
| 17 | 15, 16 | breq12d 5155 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) | 
| 18 | 14, 17 | anbi12d 632 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))) | 
| 19 | 18 | ralbidv 3177 | . . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))) | 
| 20 | 10, 19 | anbi12d 632 | . . . . 5
⊢ (𝑓 = 𝐹 → ((((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) | 
| 21 | 20 | ralbidv 3177 | . . . 4
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) | 
| 22 | 21 | elrab 3691 | . . 3
⊢ (𝐹 ∈ {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} ↔ (𝐹 ∈ ((0[,)+∞) ↑m
𝐵) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) | 
| 23 |  | ovex 7465 | . . . . 5
⊢
(0[,)+∞) ∈ V | 
| 24 | 2 | fvexi 6919 | . . . . 5
⊢ 𝐵 ∈ V | 
| 25 | 23, 24 | elmap 8912 | . . . 4
⊢ (𝐹 ∈ ((0[,)+∞)
↑m 𝐵)
↔ 𝐹:𝐵⟶(0[,)+∞)) | 
| 26 | 25 | anbi1i 624 | . . 3
⊢ ((𝐹 ∈ ((0[,)+∞)
↑m 𝐵) ∧
∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))) ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) | 
| 27 | 22, 26 | bitri 275 | . 2
⊢ (𝐹 ∈ {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) | 
| 28 | 7, 27 | bitrdi 287 | 1
⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |