Step | Hyp | Ref
| Expression |
1 | | abvfval.a |
. . . 4
⊢ 𝐴 = (AbsVal‘𝑅) |
2 | | abvfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
3 | | abvfval.p |
. . . 4
⊢ + =
(+g‘𝑅) |
4 | | abvfval.t |
. . . 4
⊢ · =
(.r‘𝑅) |
5 | | abvfval.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
6 | 1, 2, 3, 4, 5 | abvfval 19993 |
. . 3
⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |
7 | 6 | eleq2d 2824 |
. 2
⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ 𝐹 ∈ {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))})) |
8 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
9 | 8 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 0 ↔ (𝐹‘𝑥) = 0)) |
10 | 9 | bibi1d 343 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ))) |
11 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
12 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
13 | 8, 12 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) · (𝑓‘𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) |
14 | 11, 13 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)))) |
15 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
16 | 8, 12 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) + (𝑓‘𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
17 | 15, 16 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) |
18 | 14, 17 | anbi12d 630 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))) |
19 | 18 | ralbidv 3120 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))) |
20 | 10, 19 | anbi12d 630 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
21 | 20 | ralbidv 3120 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
22 | 21 | elrab 3617 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} ↔ (𝐹 ∈ ((0[,)+∞) ↑m
𝐵) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
23 | | ovex 7288 |
. . . . 5
⊢
(0[,)+∞) ∈ V |
24 | 2 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
25 | 23, 24 | elmap 8617 |
. . . 4
⊢ (𝐹 ∈ ((0[,)+∞)
↑m 𝐵)
↔ 𝐹:𝐵⟶(0[,)+∞)) |
26 | 25 | anbi1i 623 |
. . 3
⊢ ((𝐹 ∈ ((0[,)+∞)
↑m 𝐵) ∧
∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))) ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
27 | 22, 26 | bitri 274 |
. 2
⊢ (𝐹 ∈ {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
28 | 7, 27 | bitrdi 286 |
1
⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |