MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq2 Structured version   Visualization version   GIF version

Theorem addpipq2 10849
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)

Proof of Theorem addpipq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . 5 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
21oveq1d 7368 . . . 4 (𝑥 = 𝐴 → ((1st𝑥) ·N (2nd𝑦)) = ((1st𝐴) ·N (2nd𝑦)))
3 fveq2 6826 . . . . 5 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
43oveq2d 7369 . . . 4 (𝑥 = 𝐴 → ((1st𝑦) ·N (2nd𝑥)) = ((1st𝑦) ·N (2nd𝐴)))
52, 4oveq12d 7371 . . 3 (𝑥 = 𝐴 → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) = (((1st𝐴) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝐴))))
63oveq1d 7368 . . 3 (𝑥 = 𝐴 → ((2nd𝑥) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝑦)))
75, 6opeq12d 4835 . 2 (𝑥 = 𝐴 → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ = ⟨(((1st𝐴) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝑦))⟩)
8 fveq2 6826 . . . . 5 (𝑦 = 𝐵 → (2nd𝑦) = (2nd𝐵))
98oveq2d 7369 . . . 4 (𝑦 = 𝐵 → ((1st𝐴) ·N (2nd𝑦)) = ((1st𝐴) ·N (2nd𝐵)))
10 fveq2 6826 . . . . 5 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
1110oveq1d 7368 . . . 4 (𝑦 = 𝐵 → ((1st𝑦) ·N (2nd𝐴)) = ((1st𝐵) ·N (2nd𝐴)))
129, 11oveq12d 7371 . . 3 (𝑦 = 𝐵 → (((1st𝐴) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝐴))) = (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))))
138oveq2d 7369 . . 3 (𝑦 = 𝐵 → ((2nd𝐴) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝐵)))
1412, 13opeq12d 4835 . 2 (𝑦 = 𝐵 → ⟨(((1st𝐴) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝑦))⟩ = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
15 df-plpq 10821 . 2 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
16 opex 5411 . 2 ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V
177, 14, 15, 16ovmpo 7513 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Ncnpi 10757   +N cpli 10758   ·N cmi 10759   +pQ cplpq 10761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-plpq 10821
This theorem is referenced by:  addpipq  10850  addcompq  10863  adderpqlem  10867  addassnq  10871  distrnq  10874  ltanq  10884
  Copyright terms: Public domain W3C validator