| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addpipq | Structured version Visualization version GIF version | ||
| Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5691 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | opelxpi 5691 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
| 3 | addpipq2 10950 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
| 5 | op1stg 8000 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 6 | op2ndg 8001 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
| 7 | 5, 6 | oveqan12d 7424 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐷)) |
| 8 | op1stg 8000 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
| 9 | op2ndg 8001 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 10 | 8, 9 | oveqan12rd 7425 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉)) = (𝐶 ·N 𝐵)) |
| 11 | 7, 10 | oveq12d 7423 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵))) |
| 12 | 9, 6 | oveqan12d 7424 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
| 13 | 11, 12 | opeq12d 4857 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
| 14 | 4, 13 | eqtrd 2770 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 Ncnpi 10858 +N cpli 10859 ·N cmi 10860 +pQ cplpq 10862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-plpq 10922 |
| This theorem is referenced by: addassnq 10972 distrnq 10975 1lt2nq 10987 ltexnq 10989 prlem934 11047 |
| Copyright terms: Public domain | W3C validator |