MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq Structured version   Visualization version   GIF version

Theorem addpipq 10951
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)

Proof of Theorem addpipq
StepHypRef Expression
1 opelxpi 5691 . . 3 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 opelxpi 5691 . . 3 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
3 addpipq2 10950 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
41, 2, 3syl2an 596 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
5 op1stg 8000 . . . . 5 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6 op2ndg 8001 . . . . 5 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
75, 6oveqan12d 7424 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐴 ·N 𝐷))
8 op1stg 8000 . . . . 5 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 8001 . . . . 5 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
108, 9oveqan12rd 7425 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐶 ·N 𝐵))
117, 10oveq12d 7423 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)))
129, 6oveqan12d 7424 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐵 ·N 𝐷))
1311, 12opeq12d 4857 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩ = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
144, 13eqtrd 2770 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4607   × cxp 5652  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  Ncnpi 10858   +N cpli 10859   ·N cmi 10860   +pQ cplpq 10862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-plpq 10922
This theorem is referenced by:  addassnq  10972  distrnq  10975  1lt2nq  10987  ltexnq  10989  prlem934  11047
  Copyright terms: Public domain W3C validator