| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addpipq | Structured version Visualization version GIF version | ||
| Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5658 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | opelxpi 5658 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
| 3 | addpipq2 10837 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
| 5 | op1stg 7942 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 6 | op2ndg 7943 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
| 7 | 5, 6 | oveqan12d 7374 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐷)) |
| 8 | op1stg 7942 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
| 9 | op2ndg 7943 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 10 | 8, 9 | oveqan12rd 7375 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉)) = (𝐶 ·N 𝐵)) |
| 11 | 7, 10 | oveq12d 7373 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵))) |
| 12 | 9, 6 | oveqan12d 7374 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
| 13 | 11, 12 | opeq12d 4834 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
| 14 | 4, 13 | eqtrd 2768 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Ncnpi 10745 +N cpli 10746 ·N cmi 10747 +pQ cplpq 10749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-plpq 10809 |
| This theorem is referenced by: addassnq 10859 distrnq 10862 1lt2nq 10874 ltexnq 10876 prlem934 10934 |
| Copyright terms: Public domain | W3C validator |