Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addpipq | Structured version Visualization version GIF version |
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5564 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | opelxpi 5564 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
3 | addpipq2 10401 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
4 | 1, 2, 3 | syl2an 598 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
5 | op1stg 7710 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
6 | op2ndg 7711 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
7 | 5, 6 | oveqan12d 7174 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐷)) |
8 | op1stg 7710 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
9 | op2ndg 7711 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
10 | 8, 9 | oveqan12rd 7175 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉)) = (𝐶 ·N 𝐵)) |
11 | 7, 10 | oveq12d 7173 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵))) |
12 | 9, 6 | oveqan12d 7174 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
13 | 11, 12 | opeq12d 4774 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
14 | 4, 13 | eqtrd 2793 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 〈cop 4531 × cxp 5525 ‘cfv 6339 (class class class)co 7155 1st c1st 7696 2nd c2nd 7697 Ncnpi 10309 +N cpli 10310 ·N cmi 10311 +pQ cplpq 10313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-plpq 10373 |
This theorem is referenced by: addassnq 10423 distrnq 10426 1lt2nq 10438 ltexnq 10440 prlem934 10498 |
Copyright terms: Public domain | W3C validator |