MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq Structured version   Visualization version   GIF version

Theorem addpipq 10820
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)

Proof of Theorem addpipq
StepHypRef Expression
1 opelxpi 5651 . . 3 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 opelxpi 5651 . . 3 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
3 addpipq2 10819 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
41, 2, 3syl2an 596 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
5 op1stg 7928 . . . . 5 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6 op2ndg 7929 . . . . 5 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
75, 6oveqan12d 7360 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐴 ·N 𝐷))
8 op1stg 7928 . . . . 5 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7929 . . . . 5 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
108, 9oveqan12rd 7361 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐶 ·N 𝐵))
117, 10oveq12d 7359 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)))
129, 6oveqan12d 7360 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐵 ·N 𝐷))
1311, 12opeq12d 4831 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩ = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
144, 13eqtrd 2765 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  cop 4580   × cxp 5612  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Ncnpi 10727   +N cpli 10728   ·N cmi 10729   +pQ cplpq 10731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-plpq 10791
This theorem is referenced by:  addassnq  10841  distrnq  10844  1lt2nq  10856  ltexnq  10858  prlem934  10916
  Copyright terms: Public domain W3C validator