MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq Structured version   Visualization version   GIF version

Theorem addpipq 10739
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)

Proof of Theorem addpipq
StepHypRef Expression
1 opelxpi 5637 . . 3 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 opelxpi 5637 . . 3 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
3 addpipq2 10738 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
41, 2, 3syl2an 597 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
5 op1stg 7875 . . . . 5 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6 op2ndg 7876 . . . . 5 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
75, 6oveqan12d 7326 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐴 ·N 𝐷))
8 op1stg 7875 . . . . 5 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7876 . . . . 5 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
108, 9oveqan12rd 7327 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐶 ·N 𝐵))
117, 10oveq12d 7325 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)))
129, 6oveqan12d 7326 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐵 ·N 𝐷))
1311, 12opeq12d 4817 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩ = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
144, 13eqtrd 2776 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cop 4571   × cxp 5598  cfv 6458  (class class class)co 7307  1st c1st 7861  2nd c2nd 7862  Ncnpi 10646   +N cpli 10647   ·N cmi 10648   +pQ cplpq 10650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-plpq 10710
This theorem is referenced by:  addassnq  10760  distrnq  10763  1lt2nq  10775  ltexnq  10777  prlem934  10835
  Copyright terms: Public domain W3C validator