MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq Structured version   Visualization version   GIF version

Theorem addpipq 10838
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)

Proof of Theorem addpipq
StepHypRef Expression
1 opelxpi 5658 . . 3 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 opelxpi 5658 . . 3 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
3 addpipq2 10837 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
41, 2, 3syl2an 596 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
5 op1stg 7942 . . . . 5 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6 op2ndg 7943 . . . . 5 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
75, 6oveqan12d 7374 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐴 ·N 𝐷))
8 op1stg 7942 . . . . 5 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7943 . . . . 5 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
108, 9oveqan12rd 7375 . . . 4 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐶 ·N 𝐵))
117, 10oveq12d 7373 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)))
129, 6oveqan12d 7374 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐵 ·N 𝐷))
1311, 12opeq12d 4834 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(((1st ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) +N ((1st ‘⟨𝐶, 𝐷⟩) ·N (2nd ‘⟨𝐴, 𝐵⟩))), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩ = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
144, 13eqtrd 2768 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ +pQ𝐶, 𝐷⟩) = ⟨((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Ncnpi 10745   +N cpli 10746   ·N cmi 10747   +pQ cplpq 10749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-plpq 10809
This theorem is referenced by:  addassnq  10859  distrnq  10862  1lt2nq  10874  ltexnq  10876  prlem934  10934
  Copyright terms: Public domain W3C validator