Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addpipq | Structured version Visualization version GIF version |
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5625 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | opelxpi 5625 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
3 | addpipq2 10676 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
5 | op1stg 7829 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
6 | op2ndg 7830 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
7 | 5, 6 | oveqan12d 7287 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐷)) |
8 | op1stg 7829 | . . . . 5 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
9 | op2ndg 7830 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
10 | 8, 9 | oveqan12rd 7288 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉)) = (𝐶 ·N 𝐵)) |
11 | 7, 10 | oveq12d 7286 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))) = ((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵))) |
12 | 9, 6 | oveqan12d 7287 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
13 | 11, 12 | opeq12d 4817 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈(((1st ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) +N ((1st ‘〈𝐶, 𝐷〉) ·N (2nd ‘〈𝐴, 𝐵〉))), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
14 | 4, 13 | eqtrd 2779 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 〈cop 4572 × cxp 5586 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 Ncnpi 10584 +N cpli 10585 ·N cmi 10586 +pQ cplpq 10588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-plpq 10648 |
This theorem is referenced by: addassnq 10698 distrnq 10701 1lt2nq 10713 ltexnq 10715 prlem934 10773 |
Copyright terms: Public domain | W3C validator |