MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco2 Structured version   Visualization version   GIF version

Theorem fvco2 6985
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6247 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 6967 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 6057 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2791 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2819 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 6524 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3 6884 . 2 ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋}))
8 dffv3 6884 . 2 (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)}))
96, 7, 83eqtr4g 2797 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4627  cima 5678  ccom 5679  cio 6490   Fn wfn 6535  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548
This theorem is referenced by:  fvco  6986  fvco3  6987  fvco4i  6989  fvcofneq  7091  ofco  7689  curry1  8086  curry2  8089  fsplitfpar  8100  enfixsn  9077  updjudhcoinlf  9923  updjudhcoinrg  9924  updjud  9925  smobeth  10577  fpwwe  10637  addpqnq  10929  mulpqnq  10932  revco  14781  ccatco  14782  cshco  14783  swrdco  14784  isoval  17708  prdsidlem  18653  gsumwmhm  18722  prdsinvlem  18928  gsmsymgrfixlem1  19289  f1omvdconj  19308  pmtrfinv  19323  symggen  19332  symgtrinv  19334  pmtr3ncomlem1  19335  ringidval  20000  prdsmgp  20125  lmhmco  20646  chrrhm  21074  cofipsgn  21137  dsmmbas2  21283  dsmm0cl  21286  frlmbas  21301  frlmup3  21346  frlmup4  21347  f1lindf  21368  lindfmm  21373  evlslem1  21636  evlsvar  21644  m1detdiag  22090  1stccnp  22957  prdstopn  23123  xpstopnlem2  23306  uniioombllem6  25096  precsexlem1  27642  precsexlem2  27643  precsexlem3  27644  precsexlem4  27645  precsexlem5  27646  ex-fpar  29704  0vfval  29846  ghmquskerco  32517  cnre2csqlem  32878  mblfinlem2  36514  rabren3dioph  41538  hausgraph  41939  stoweidlem59  44761  afvco2  45870  isomushgr  46480  isomgrtrlem  46492  ackvalsucsucval  47327
  Copyright terms: Public domain W3C validator