![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvco2 | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
fvco2 | ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6282 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
2 | fnsnfv 7001 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) | |
3 | 2 | imaeq2d 6089 | . . . . 5 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 “ {(𝐺‘𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
4 | 1, 3 | eqtr4id 2799 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺‘𝑋)})) |
5 | 4 | eleq2d 2830 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
6 | 5 | iotabidv 6557 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
7 | dffv3 6916 | . 2 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) | |
8 | dffv3 6916 | . 2 ⊢ (𝐹‘(𝐺‘𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)})) | |
9 | 6, 7, 8 | 3eqtr4g 2805 | 1 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 “ cima 5703 ∘ ccom 5704 ℩cio 6523 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: fvco 7020 fvco3 7021 fvco4i 7023 fvcofneq 7127 coof 7737 ofco 7738 curry1 8145 curry2 8148 fsplitfpar 8159 enfixsn 9147 updjudhcoinlf 10001 updjudhcoinrg 10002 updjud 10003 smobeth 10655 fpwwe 10715 addpqnq 11007 mulpqnq 11010 revco 14883 ccatco 14884 cshco 14885 swrdco 14886 isoval 17826 prdsidlem 18804 gsumwmhm 18880 prdsinvlem 19089 ghmquskerco 19324 gsmsymgrfixlem1 19469 f1omvdconj 19488 pmtrfinv 19503 symggen 19512 symgtrinv 19514 pmtr3ncomlem1 19515 prdsmgp 20178 ringidval 20210 lmhmco 21065 chrrhm 21569 cofipsgn 21634 dsmmbas2 21780 dsmm0cl 21783 frlmbas 21798 frlmup3 21843 frlmup4 21844 f1lindf 21865 lindfmm 21870 evlslem1 22129 evlsvar 22137 m1detdiag 22624 1stccnp 23491 prdstopn 23657 xpstopnlem2 23840 uniioombllem6 25642 precsexlem1 28249 precsexlem2 28250 precsexlem3 28251 precsexlem4 28252 precsexlem5 28253 ex-fpar 30494 0vfval 30638 cnre2csqlem 33856 mblfinlem2 37618 rabren3dioph 42771 hausgraph 43166 stoweidlem59 45980 afvco2 47091 gricushgr 47770 ackvalsucsucval 48422 |
Copyright terms: Public domain | W3C validator |