| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco2 | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fvco2 | ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6245 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
| 2 | fnsnfv 6963 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) | |
| 3 | 2 | imaeq2d 6052 | . . . . 5 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 “ {(𝐺‘𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
| 4 | 1, 3 | eqtr4id 2790 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺‘𝑋)})) |
| 5 | 4 | eleq2d 2821 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 6 | 5 | iotabidv 6520 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 7 | dffv3 6877 | . 2 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) | |
| 8 | dffv3 6877 | . 2 ⊢ (𝐹‘(𝐺‘𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)})) | |
| 9 | 6, 7, 8 | 3eqtr4g 2796 | 1 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 “ cima 5662 ∘ ccom 5663 ℩cio 6487 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: fvco 6982 fvco3 6983 fvco4i 6985 fvcofneq 7088 coof 7700 ofco 7701 curry1 8108 curry2 8111 fsplitfpar 8122 enfixsn 9100 updjudhcoinlf 9951 updjudhcoinrg 9952 updjud 9953 smobeth 10605 fpwwe 10665 addpqnq 10957 mulpqnq 10960 revco 14858 ccatco 14859 cshco 14860 swrdco 14861 isoval 17783 prdsidlem 18752 gsumwmhm 18828 prdsinvlem 19037 ghmquskerco 19272 gsmsymgrfixlem1 19413 f1omvdconj 19432 pmtrfinv 19447 symggen 19456 symgtrinv 19458 pmtr3ncomlem1 19459 prdsmgp 20116 ringidval 20148 lmhmco 21006 chrrhm 21497 cofipsgn 21558 dsmmbas2 21702 dsmm0cl 21705 frlmbas 21720 frlmup3 21765 frlmup4 21766 f1lindf 21787 lindfmm 21792 evlslem1 22045 evlsvar 22053 m1detdiag 22540 1stccnp 23405 prdstopn 23571 xpstopnlem2 23754 uniioombllem6 25546 precsexlem1 28166 precsexlem2 28167 precsexlem3 28168 precsexlem4 28169 precsexlem5 28170 ex-fpar 30448 0vfval 30592 cnre2csqlem 33946 mblfinlem2 37687 rabren3dioph 42813 hausgraph 43204 stoweidlem59 46068 afvco2 47185 gricushgr 47910 ackvalsucsucval 48648 |
| Copyright terms: Public domain | W3C validator |