| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco2 | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fvco2 | ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6212 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
| 2 | fnsnfv 6922 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) | |
| 3 | 2 | imaeq2d 6020 | . . . . 5 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 “ {(𝐺‘𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
| 4 | 1, 3 | eqtr4id 2783 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺‘𝑋)})) |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 6 | 5 | iotabidv 6483 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 7 | dffv3 6836 | . 2 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) | |
| 8 | dffv3 6836 | . 2 ⊢ (𝐹‘(𝐺‘𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)})) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | 1 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 “ cima 5634 ∘ ccom 5635 ℩cio 6450 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fvco 6941 fvco3 6942 fvco4i 6944 fvcofneq 7047 coof 7657 ofco 7658 curry1 8060 curry2 8063 fsplitfpar 8074 enfixsn 9027 updjudhcoinlf 9861 updjudhcoinrg 9862 updjud 9863 smobeth 10515 fpwwe 10575 addpqnq 10867 mulpqnq 10870 revco 14776 ccatco 14777 cshco 14778 swrdco 14779 isoval 17703 prdsidlem 18672 gsumwmhm 18748 prdsinvlem 18957 ghmquskerco 19192 gsmsymgrfixlem1 19333 f1omvdconj 19352 pmtrfinv 19367 symggen 19376 symgtrinv 19378 pmtr3ncomlem1 19379 prdsmgp 20036 ringidval 20068 lmhmco 20926 chrrhm 21417 cofipsgn 21478 dsmmbas2 21622 dsmm0cl 21625 frlmbas 21640 frlmup3 21685 frlmup4 21686 f1lindf 21707 lindfmm 21712 evlslem1 21965 evlsvar 21973 m1detdiag 22460 1stccnp 23325 prdstopn 23491 xpstopnlem2 23674 uniioombllem6 25465 precsexlem1 28085 precsexlem2 28086 precsexlem3 28087 precsexlem4 28088 precsexlem5 28089 ex-fpar 30364 0vfval 30508 cnre2csqlem 33873 mblfinlem2 37625 rabren3dioph 42776 hausgraph 43167 stoweidlem59 46030 afvco2 47150 gricushgr 47890 ackvalsucsucval 48650 |
| Copyright terms: Public domain | W3C validator |