MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco2 Structured version   Visualization version   GIF version

Theorem fvco2 6920
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6200 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 6902 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 6011 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2783 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2814 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 6466 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3 6818 . 2 ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋}))
8 dffv3 6818 . 2 (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)}))
96, 7, 83eqtr4g 2789 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4577  cima 5622  ccom 5623  cio 6436   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  fvco  6921  fvco3  6922  fvco4i  6924  fvcofneq  7027  coof  7637  ofco  7638  curry1  8037  curry2  8040  fsplitfpar  8051  enfixsn  9003  updjudhcoinlf  9828  updjudhcoinrg  9829  updjud  9830  smobeth  10480  fpwwe  10540  addpqnq  10832  mulpqnq  10835  revco  14741  ccatco  14742  cshco  14743  swrdco  14744  isoval  17672  prdsidlem  18643  gsumwmhm  18719  prdsinvlem  18928  ghmquskerco  19163  gsmsymgrfixlem1  19306  f1omvdconj  19325  pmtrfinv  19340  symggen  19349  symgtrinv  19351  pmtr3ncomlem1  19352  prdsmgp  20036  ringidval  20068  lmhmco  20947  chrrhm  21438  cofipsgn  21500  dsmmbas2  21644  dsmm0cl  21647  frlmbas  21662  frlmup3  21707  frlmup4  21708  f1lindf  21729  lindfmm  21734  evlslem1  21987  evlsvar  21995  m1detdiag  22482  1stccnp  23347  prdstopn  23513  xpstopnlem2  23696  uniioombllem6  25487  precsexlem1  28114  precsexlem2  28115  precsexlem3  28116  precsexlem4  28117  precsexlem5  28118  ex-fpar  30406  0vfval  30550  cnre2csqlem  33877  mblfinlem2  37642  rabren3dioph  42792  hausgraph  43182  stoweidlem59  46044  afvco2  47164  gricushgr  47905  ackvalsucsucval  48677
  Copyright terms: Public domain W3C validator