| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco2 | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fvco2 | ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6198 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
| 2 | fnsnfv 6901 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) | |
| 3 | 2 | imaeq2d 6008 | . . . . 5 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 “ {(𝐺‘𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
| 4 | 1, 3 | eqtr4id 2785 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺‘𝑋)})) |
| 5 | 4 | eleq2d 2817 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 6 | 5 | iotabidv 6465 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 7 | dffv3 6818 | . 2 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) | |
| 8 | dffv3 6818 | . 2 ⊢ (𝐹‘(𝐺‘𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)})) | |
| 9 | 6, 7, 8 | 3eqtr4g 2791 | 1 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 “ cima 5617 ∘ ccom 5618 ℩cio 6435 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fvco 6920 fvco3 6921 fvco4i 6923 fvcofneq 7026 coof 7634 ofco 7635 curry1 8034 curry2 8037 fsplitfpar 8048 enfixsn 8999 updjudhcoinlf 9825 updjudhcoinrg 9826 updjud 9827 smobeth 10477 fpwwe 10537 addpqnq 10829 mulpqnq 10832 revco 14741 ccatco 14742 cshco 14743 swrdco 14744 isoval 17672 prdsidlem 18677 gsumwmhm 18753 prdsinvlem 18962 ghmquskerco 19196 gsmsymgrfixlem1 19339 f1omvdconj 19358 pmtrfinv 19373 symggen 19382 symgtrinv 19384 pmtr3ncomlem1 19385 prdsmgp 20069 ringidval 20101 lmhmco 20977 chrrhm 21468 cofipsgn 21530 dsmmbas2 21674 dsmm0cl 21677 frlmbas 21692 frlmup3 21737 frlmup4 21738 f1lindf 21759 lindfmm 21764 evlslem1 22017 evlsvar 22025 m1detdiag 22512 1stccnp 23377 prdstopn 23543 xpstopnlem2 23726 uniioombllem6 25516 precsexlem1 28145 precsexlem2 28146 precsexlem3 28147 precsexlem4 28148 precsexlem5 28149 ex-fpar 30442 0vfval 30586 cnre2csqlem 33923 mblfinlem2 37708 rabren3dioph 42918 hausgraph 43308 stoweidlem59 46167 afvco2 47286 gricushgr 48027 ackvalsucsucval 48799 |
| Copyright terms: Public domain | W3C validator |