| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco2 | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fvco2 | ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6253 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
| 2 | fnsnfv 6969 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) | |
| 3 | 2 | imaeq2d 6060 | . . . . 5 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 “ {(𝐺‘𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
| 4 | 1, 3 | eqtr4id 2788 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺‘𝑋)})) |
| 5 | 4 | eleq2d 2819 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 6 | 5 | iotabidv 6526 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
| 7 | dffv3 6883 | . 2 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) | |
| 8 | dffv3 6883 | . 2 ⊢ (𝐹‘(𝐺‘𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)})) | |
| 9 | 6, 7, 8 | 3eqtr4g 2794 | 1 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4608 “ cima 5670 ∘ ccom 5671 ℩cio 6493 Fn wfn 6537 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 |
| This theorem is referenced by: fvco 6988 fvco3 6989 fvco4i 6991 fvcofneq 7094 coof 7704 ofco 7705 curry1 8112 curry2 8115 fsplitfpar 8126 enfixsn 9104 updjudhcoinlf 9955 updjudhcoinrg 9956 updjud 9957 smobeth 10609 fpwwe 10669 addpqnq 10961 mulpqnq 10964 revco 14856 ccatco 14857 cshco 14858 swrdco 14859 isoval 17785 prdsidlem 18756 gsumwmhm 18832 prdsinvlem 19041 ghmquskerco 19276 gsmsymgrfixlem1 19418 f1omvdconj 19437 pmtrfinv 19452 symggen 19461 symgtrinv 19463 pmtr3ncomlem1 19464 prdsmgp 20121 ringidval 20153 lmhmco 21015 chrrhm 21513 cofipsgn 21578 dsmmbas2 21724 dsmm0cl 21727 frlmbas 21742 frlmup3 21787 frlmup4 21788 f1lindf 21809 lindfmm 21814 evlslem1 22073 evlsvar 22081 m1detdiag 22570 1stccnp 23435 prdstopn 23601 xpstopnlem2 23784 uniioombllem6 25578 precsexlem1 28186 precsexlem2 28187 precsexlem3 28188 precsexlem4 28189 precsexlem5 28190 ex-fpar 30428 0vfval 30572 cnre2csqlem 33850 mblfinlem2 37606 rabren3dioph 42771 hausgraph 43162 stoweidlem59 46019 afvco2 47134 gricushgr 47832 ackvalsucsucval 48555 |
| Copyright terms: Public domain | W3C validator |