Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco2 | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
fvco2 | ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6144 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
2 | fnsnfv 6829 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) | |
3 | 2 | imaeq2d 5958 | . . . . 5 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 “ {(𝐺‘𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
4 | 1, 3 | eqtr4id 2798 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺‘𝑋)})) |
5 | 4 | eleq2d 2824 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
6 | 5 | iotabidv 6402 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)}))) |
7 | dffv3 6752 | . 2 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) | |
8 | dffv3 6752 | . 2 ⊢ (𝐹‘(𝐺‘𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺‘𝑋)})) | |
9 | 6, 7, 8 | 3eqtr4g 2804 | 1 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 “ cima 5583 ∘ ccom 5584 ℩cio 6374 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: fvco 6848 fvco3 6849 fvco4i 6851 fvcofneq 6951 ofco 7534 curry1 7915 curry2 7918 fsplitfpar 7930 enfixsn 8821 updjudhcoinlf 9621 updjudhcoinrg 9622 updjud 9623 smobeth 10273 fpwwe 10333 addpqnq 10625 mulpqnq 10628 revco 14475 ccatco 14476 cshco 14477 swrdco 14478 isoval 17394 prdsidlem 18332 gsumwmhm 18399 prdsinvlem 18599 gsmsymgrfixlem1 18950 f1omvdconj 18969 pmtrfinv 18984 symggen 18993 symgtrinv 18995 pmtr3ncomlem1 18996 ringidval 19654 prdsmgp 19764 lmhmco 20220 chrrhm 20647 cofipsgn 20710 dsmmbas2 20854 dsmm0cl 20857 frlmbas 20872 frlmup3 20917 frlmup4 20918 f1lindf 20939 lindfmm 20944 evlslem1 21202 evlsvar 21210 m1detdiag 21654 1stccnp 22521 prdstopn 22687 xpstopnlem2 22870 uniioombllem6 24657 ex-fpar 28727 0vfval 28869 cnre2csqlem 31762 mblfinlem2 35742 rabren3dioph 40553 hausgraph 40953 stoweidlem59 43490 afvco2 44555 isomushgr 45166 isomgrtrlem 45178 ackvalsucsucval 45922 |
Copyright terms: Public domain | W3C validator |