MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco2 Structured version   Visualization version   GIF version

Theorem fvco2 7019
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6282 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 7001 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 6089 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2799 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2830 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 6557 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3 6916 . 2 ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋}))
8 dffv3 6916 . 2 (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)}))
96, 7, 83eqtr4g 2805 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cima 5703  ccom 5704  cio 6523   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  fvco  7020  fvco3  7021  fvco4i  7023  fvcofneq  7127  coof  7737  ofco  7738  curry1  8145  curry2  8148  fsplitfpar  8159  enfixsn  9147  updjudhcoinlf  10001  updjudhcoinrg  10002  updjud  10003  smobeth  10655  fpwwe  10715  addpqnq  11007  mulpqnq  11010  revco  14883  ccatco  14884  cshco  14885  swrdco  14886  isoval  17826  prdsidlem  18804  gsumwmhm  18880  prdsinvlem  19089  ghmquskerco  19324  gsmsymgrfixlem1  19469  f1omvdconj  19488  pmtrfinv  19503  symggen  19512  symgtrinv  19514  pmtr3ncomlem1  19515  prdsmgp  20178  ringidval  20210  lmhmco  21065  chrrhm  21569  cofipsgn  21634  dsmmbas2  21780  dsmm0cl  21783  frlmbas  21798  frlmup3  21843  frlmup4  21844  f1lindf  21865  lindfmm  21870  evlslem1  22129  evlsvar  22137  m1detdiag  22624  1stccnp  23491  prdstopn  23657  xpstopnlem2  23840  uniioombllem6  25642  precsexlem1  28249  precsexlem2  28250  precsexlem3  28251  precsexlem4  28252  precsexlem5  28253  ex-fpar  30494  0vfval  30638  cnre2csqlem  33856  mblfinlem2  37618  rabren3dioph  42771  hausgraph  43166  stoweidlem59  45980  afvco2  47091  gricushgr  47770  ackvalsucsucval  48422
  Copyright terms: Public domain W3C validator