MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco2 Structured version   Visualization version   GIF version

Theorem fvco2 6735
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6071 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 6718 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 5896 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2852 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2875 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 6308 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3 6641 . 2 ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋}))
8 dffv3 6641 . 2 (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)}))
96, 7, 83eqtr4g 2858 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {csn 4525  cima 5522  ccom 5523  cio 6281   Fn wfn 6319  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332
This theorem is referenced by:  fvco  6736  fvco3  6737  fvco4i  6739  fvcofneq  6836  ofco  7409  curry1  7782  curry2  7785  fsplitfpar  7797  enfixsn  8609  updjudhcoinlf  9345  updjudhcoinrg  9346  updjud  9347  smobeth  9997  fpwwe  10057  addpqnq  10349  mulpqnq  10352  revco  14187  ccatco  14188  cshco  14189  swrdco  14190  isoval  17027  prdsidlem  17935  gsumwmhm  18002  prdsinvlem  18200  gsmsymgrfixlem1  18547  f1omvdconj  18566  pmtrfinv  18581  symggen  18590  symgtrinv  18592  pmtr3ncomlem1  18593  ringidval  19246  prdsmgp  19356  lmhmco  19808  chrrhm  20223  cofipsgn  20282  dsmmbas2  20426  dsmm0cl  20429  frlmbas  20444  frlmup3  20489  frlmup4  20490  f1lindf  20511  lindfmm  20516  evlslem1  20754  evlsvar  20762  m1detdiag  21202  1stccnp  22067  prdstopn  22233  xpstopnlem2  22416  uniioombllem6  24192  ex-fpar  28247  0vfval  28389  cnre2csqlem  31263  mblfinlem2  35095  rabren3dioph  39756  hausgraph  40156  stoweidlem59  42701  afvco2  43732  isomushgr  44344  isomgrtrlem  44356  ackvalsucsucval  45102
  Copyright terms: Public domain W3C validator