Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrnb | Structured version Visualization version GIF version |
Description: A member of a function's range is a value of the function, analogous to fvelrnb 6830 with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvelrnb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnafv 44654 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) |
3 | 2 | eleq2d 2824 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)})) |
4 | eqeq1 2742 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ 𝐵 = (𝐹'''𝑥))) | |
5 | eqcom 2745 | . . . . . 6 ⊢ (𝐵 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵) | |
6 | 4, 5 | bitrdi 287 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵)) |
7 | 6 | rexbidv 3226 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
8 | 7 | elabg 3607 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
10 | 3, 9 | bitrd 278 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ran crn 5590 Fn wfn 6428 '''cafv 44609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-aiota 44577 df-dfat 44611 df-afv 44612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |