![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrnb | Structured version Visualization version GIF version |
Description: A member of a function's range is a value of the function, analogous to fvelrnb 6984 with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvelrnb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnafv 47079 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) |
3 | 2 | eleq2d 2830 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)})) |
4 | eqeq1 2744 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ 𝐵 = (𝐹'''𝑥))) | |
5 | eqcom 2747 | . . . . . 6 ⊢ (𝐵 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵) | |
6 | 4, 5 | bitrdi 287 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵)) |
7 | 6 | rexbidv 3185 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
8 | 7 | elabg 3690 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
10 | 3, 9 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ran crn 5701 Fn wfn 6570 '''cafv 47034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6527 df-fun 6577 df-fn 6578 df-fv 6583 df-aiota 47002 df-dfat 47036 df-afv 47037 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |