Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrnb Structured version   Visualization version   GIF version

Theorem afvelrnb 47080
Description: A member of a function's range is a value of the function, analogous to fvelrnb 6984 with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrnb ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem afvelrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrnafv 47079 . . . 4 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
21adantr 480 . . 3 ((𝐹 Fn 𝐴𝐵𝑉) → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
32eleq2d 2830 . 2 ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ ran 𝐹𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)}))
4 eqeq1 2744 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ 𝐵 = (𝐹'''𝑥)))
5 eqcom 2747 . . . . . 6 (𝐵 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵)
64, 5bitrdi 287 . . . . 5 (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵))
76rexbidv 3185 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = (𝐹'''𝑥) ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
87elabg 3690 . . 3 (𝐵𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
98adantl 481 . 2 ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
103, 9bitrd 279 1 ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  ran crn 5701   Fn wfn 6570  '''cafv 47034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6527  df-fun 6577  df-fn 6578  df-fv 6583  df-aiota 47002  df-dfat 47036  df-afv 47037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator