Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelrnb Structured version   Visualization version   GIF version

Theorem afvelrnb 47141
Description: A member of a function's range is a value of the function, analogous to fvelrnb 6976 with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelrnb ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem afvelrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrnafv 47140 . . . 4 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
21adantr 480 . . 3 ((𝐹 Fn 𝐴𝐵𝑉) → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
32eleq2d 2827 . 2 ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ ran 𝐹𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)}))
4 eqeq1 2741 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ 𝐵 = (𝐹'''𝑥)))
5 eqcom 2744 . . . . . 6 (𝐵 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵)
64, 5bitrdi 287 . . . . 5 (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵))
76rexbidv 3179 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = (𝐹'''𝑥) ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
87elabg 3680 . . 3 (𝐵𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
98adantl 481 . 2 ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
103, 9bitrd 279 1 ((𝐹 Fn 𝐴𝐵𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹'''𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  {cab 2714  wrex 3070  ran crn 5694   Fn wfn 6564  '''cafv 47095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-iota 6522  df-fun 6571  df-fn 6572  df-fv 6577  df-aiota 47063  df-dfat 47097  df-afv 47098
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator