![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnrnafv | Structured version Visualization version GIF version |
Description: The range of a function expressed as a collection of the function's values, analogous to fnrnfv 6493. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fnrnafv | ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafn5a 42056 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) | |
2 | 1 | rneqd 5589 | . 2 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
3 | eqid 2825 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) | |
4 | 3 | rnmpt 5608 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} |
5 | 2, 4 | syl6eq 2877 | 1 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 {cab 2811 ∃wrex 3118 ↦ cmpt 4954 ran crn 5347 Fn wfn 6122 '''cafv 42013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-int 4700 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-iota 6090 df-fun 6129 df-fn 6130 df-fv 6135 df-aiota 41976 df-dfat 42015 df-afv 42016 |
This theorem is referenced by: afvelrnb 42059 afvelrnb0 42060 |
Copyright terms: Public domain | W3C validator |