Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnrnafv Structured version   Visualization version   GIF version

Theorem fnrnafv 47193
Description: The range of a function expressed as a collection of the function's values, analogous to fnrnfv 6876. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnrnafv (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnrnafv
StepHypRef Expression
1 dfafn5a 47191 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
21rneqd 5873 . 2 (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹'''𝑥)))
3 eqid 2731 . . 3 (𝑥𝐴 ↦ (𝐹'''𝑥)) = (𝑥𝐴 ↦ (𝐹'''𝑥))
43rnmpt 5892 . 2 ran (𝑥𝐴 ↦ (𝐹'''𝑥)) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)}
52, 4eqtrdi 2782 1 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2709  wrex 3056  cmpt 5167  ran crn 5612   Fn wfn 6471  '''cafv 47148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-aiota 47116  df-dfat 47150  df-afv 47151
This theorem is referenced by:  afvelrnb  47194  afvelrnb0  47195
  Copyright terms: Public domain W3C validator