![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnrnafv | Structured version Visualization version GIF version |
Description: The range of a function expressed as a collection of the function's values, analogous to fnrnfv 6947. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fnrnafv | ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafn5a 45802 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) | |
2 | 1 | rneqd 5934 | . 2 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
3 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) | |
4 | 3 | rnmpt 5951 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} |
5 | 2, 4 | eqtrdi 2789 | 1 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 {cab 2710 ∃wrex 3071 ↦ cmpt 5229 ran crn 5675 Fn wfn 6534 '''cafv 45759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-iota 6491 df-fun 6541 df-fn 6542 df-fv 6547 df-aiota 45727 df-dfat 45761 df-afv 45762 |
This theorem is referenced by: afvelrnb 45805 afvelrnb0 45806 |
Copyright terms: Public domain | W3C validator |