Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnrnafv Structured version   Visualization version   GIF version

Theorem fnrnafv 47077
Description: The range of a function expressed as a collection of the function's values, analogous to fnrnfv 6981. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnrnafv (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnrnafv
StepHypRef Expression
1 dfafn5a 47075 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
21rneqd 5963 . 2 (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹'''𝑥)))
3 eqid 2740 . . 3 (𝑥𝐴 ↦ (𝐹'''𝑥)) = (𝑥𝐴 ↦ (𝐹'''𝑥))
43rnmpt 5980 . 2 ran (𝑥𝐴 ↦ (𝐹'''𝑥)) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)}
52, 4eqtrdi 2796 1 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹'''𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2717  wrex 3076  cmpt 5249  ran crn 5701   Fn wfn 6568  '''cafv 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035
This theorem is referenced by:  afvelrnb  47078  afvelrnb0  47079
  Copyright terms: Public domain W3C validator