| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrnb0 | Structured version Visualization version GIF version | ||
| Description: A member of a function's range is a value of the function, only one direction of implication of fvelrnb 6921. (Contributed by Alexander van der Vekens, 1-Jun-2017.) |
| Ref | Expression |
|---|---|
| afvelrnb0 | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnafv 47163 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)})) |
| 3 | eqeq1 2733 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ 𝐵 = (𝐹'''𝑥))) | |
| 4 | eqcom 2736 | . . . . . 6 ⊢ (𝐵 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵) | |
| 5 | 3, 4 | bitrdi 287 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵)) |
| 6 | 5 | rexbidv 3157 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
| 7 | 6 | elabg 3643 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
| 8 | 7 | ibi 267 | . 2 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵) |
| 9 | 2, 8 | biimtrdi 253 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ran crn 5639 Fn wfn 6506 '''cafv 47118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-aiota 47086 df-dfat 47120 df-afv 47121 |
| This theorem is referenced by: ffnafv 47172 |
| Copyright terms: Public domain | W3C validator |