Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrnb0 | Structured version Visualization version GIF version |
Description: A member of a function's range is a value of the function, only one direction of implication of fvelrnb 6812. (Contributed by Alexander van der Vekens, 1-Jun-2017.) |
Ref | Expression |
---|---|
afvelrnb0 | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnafv 44541 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)})) |
3 | eqeq1 2742 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ 𝐵 = (𝐹'''𝑥))) | |
4 | eqcom 2745 | . . . . . 6 ⊢ (𝐵 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵) | |
5 | 3, 4 | bitrdi 286 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝐵)) |
6 | 5 | rexbidv 3225 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
7 | 6 | elabg 3600 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
8 | 7 | ibi 266 | . 2 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)} → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵) |
9 | 2, 8 | syl6bi 252 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ran crn 5581 Fn wfn 6413 '''cafv 44496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-aiota 44464 df-dfat 44498 df-afv 44499 |
This theorem is referenced by: ffnafv 44550 |
Copyright terms: Public domain | W3C validator |