| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > faovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation, analogous to fovcl 7517. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| faovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| faovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | faovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | ffnaov 47200 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶)) | |
| 3 | 2 | simprbi 496 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 |
| 5 | eqidd 2730 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐹 = 𝐹) | |
| 6 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 7 | eqidd 2730 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑦 = 𝑦) | |
| 8 | 5, 6, 7 | aoveq123d 47179 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦)) = ((𝐴𝐹𝑦)) ) |
| 9 | 8 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ( ((𝑥𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝑦)) ∈ 𝐶)) |
| 10 | eqidd 2730 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐹 = 𝐹) | |
| 11 | eqidd 2730 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐴) | |
| 12 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 13 | 10, 11, 12 | aoveq123d 47179 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦)) = ((𝐴𝐹𝐵)) ) |
| 14 | 13 | eleq1d 2813 | . . 3 ⊢ (𝑦 = 𝐵 → ( ((𝐴𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝐵)) ∈ 𝐶)) |
| 15 | 9, 14 | rspc2v 3599 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 → ((𝐴𝐹𝐵)) ∈ 𝐶)) |
| 16 | 4, 15 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 × cxp 5636 Fn wfn 6506 ⟶wf 6507 ((caov 47119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-aiota 47086 df-dfat 47120 df-afv 47121 df-aov 47122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |