Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faovcl Structured version   Visualization version   GIF version

Theorem faovcl 44364
Description: Closure law for an operation, analogous to fovcl 7338. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
faovcl.1 𝐹:(𝑅 × 𝑆)⟶𝐶
Assertion
Ref Expression
faovcl ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶)

Proof of Theorem faovcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faovcl.1 . . 3 𝐹:(𝑅 × 𝑆)⟶𝐶
2 ffnaov 44363 . . . 4 (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶))
32simprbi 500 . . 3 (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶)
41, 3ax-mp 5 . 2 𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶
5 eqidd 2738 . . . . 5 (𝑥 = 𝐴𝐹 = 𝐹)
6 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7 eqidd 2738 . . . . 5 (𝑥 = 𝐴𝑦 = 𝑦)
85, 6, 7aoveq123d 44342 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)) = ((𝐴𝐹𝑦)) )
98eleq1d 2822 . . 3 (𝑥 = 𝐴 → ( ((𝑥𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝑦)) ∈ 𝐶))
10 eqidd 2738 . . . . 5 (𝑦 = 𝐵𝐹 = 𝐹)
11 eqidd 2738 . . . . 5 (𝑦 = 𝐵𝐴 = 𝐴)
12 id 22 . . . . 5 (𝑦 = 𝐵𝑦 = 𝐵)
1310, 11, 12aoveq123d 44342 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)) = ((𝐴𝐹𝐵)) )
1413eleq1d 2822 . . 3 (𝑦 = 𝐵 → ( ((𝐴𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝐵)) ∈ 𝐶))
159, 14rspc2v 3547 . 2 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 → ((𝐴𝐹𝐵)) ∈ 𝐶))
164, 15mpi 20 1 ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061   × cxp 5549   Fn wfn 6375  wf 6376   ((caov 44282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-aiota 44249  df-dfat 44283  df-afv 44284  df-aov 44285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator