Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faovcl Structured version   Visualization version   GIF version

Theorem faovcl 47209
Description: Closure law for an operation, analogous to fovcl 7540. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
faovcl.1 𝐹:(𝑅 × 𝑆)⟶𝐶
Assertion
Ref Expression
faovcl ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶)

Proof of Theorem faovcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faovcl.1 . . 3 𝐹:(𝑅 × 𝑆)⟶𝐶
2 ffnaov 47208 . . . 4 (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶))
32simprbi 496 . . 3 (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶)
41, 3ax-mp 5 . 2 𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶
5 eqidd 2737 . . . . 5 (𝑥 = 𝐴𝐹 = 𝐹)
6 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7 eqidd 2737 . . . . 5 (𝑥 = 𝐴𝑦 = 𝑦)
85, 6, 7aoveq123d 47187 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)) = ((𝐴𝐹𝑦)) )
98eleq1d 2820 . . 3 (𝑥 = 𝐴 → ( ((𝑥𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝑦)) ∈ 𝐶))
10 eqidd 2737 . . . . 5 (𝑦 = 𝐵𝐹 = 𝐹)
11 eqidd 2737 . . . . 5 (𝑦 = 𝐵𝐴 = 𝐴)
12 id 22 . . . . 5 (𝑦 = 𝐵𝑦 = 𝐵)
1310, 11, 12aoveq123d 47187 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)) = ((𝐴𝐹𝐵)) )
1413eleq1d 2820 . . 3 (𝑦 = 𝐵 → ( ((𝐴𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝐵)) ∈ 𝐶))
159, 14rspc2v 3617 . 2 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 → ((𝐴𝐹𝐵)) ∈ 𝐶))
164, 15mpi 20 1 ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052   × cxp 5657   Fn wfn 6531  wf 6532   ((caov 47127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-aiota 47094  df-dfat 47128  df-afv 47129  df-aov 47130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator