MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm2 Structured version   Visualization version   GIF version

Theorem atandm2 26938
Description: This form of atandm 26937 is a bit more useful for showing that the logarithms in df-atan 26928 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))

Proof of Theorem atandm2
StepHypRef Expression
1 atandm 26937 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
2 3anass 1095 . . 3 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)))
3 ax-1cn 11242 . . . . . . . . . 10 1 ∈ ℂ
4 ax-icn 11243 . . . . . . . . . . 11 i ∈ ℂ
5 mulcl 11268 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 689 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
7 subeq0 11562 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
83, 6, 7sylancr 586 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
94, 4mulneg2i 11737 . . . . . . . . . . . 12 (i · -i) = -(i · i)
10 ixi 11919 . . . . . . . . . . . . 13 (i · i) = -1
1110negeqi 11529 . . . . . . . . . . . 12 -(i · i) = --1
12 negneg1e1 12411 . . . . . . . . . . . 12 --1 = 1
139, 11, 123eqtri 2772 . . . . . . . . . . 11 (i · -i) = 1
1413eqeq2i 2753 . . . . . . . . . 10 ((i · 𝐴) = (i · -i) ↔ (i · 𝐴) = 1)
15 eqcom 2747 . . . . . . . . . 10 ((i · 𝐴) = 1 ↔ 1 = (i · 𝐴))
1614, 15bitri 275 . . . . . . . . 9 ((i · 𝐴) = (i · -i) ↔ 1 = (i · 𝐴))
178, 16bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · -i)))
18 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
194negcli 11604 . . . . . . . . . 10 -i ∈ ℂ
2019a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → -i ∈ ℂ)
214a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ∈ ℂ)
22 ine0 11725 . . . . . . . . . 10 i ≠ 0
2322a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ≠ 0)
2418, 20, 21, 23mulcand 11923 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · -i) ↔ 𝐴 = -i))
2517, 24bitrd 279 . . . . . . 7 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 𝐴 = -i))
2625necon3bid 2991 . . . . . 6 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ -i))
27 addcom 11476 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
283, 6, 27sylancr 586 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
29 subneg 11585 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
306, 3, 29sylancl 585 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
3128, 30eqtr4d 2783 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) − -1))
3231eqeq1d 2742 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ ((i · 𝐴) − -1) = 0))
333negcli 11604 . . . . . . . . . . 11 -1 ∈ ℂ
34 subeq0 11562 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
356, 33, 34sylancl 585 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
3632, 35bitrd 279 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = -1))
3710eqeq2i 2753 . . . . . . . . 9 ((i · 𝐴) = (i · i) ↔ (i · 𝐴) = -1)
3836, 37bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · i)))
3918, 21, 21, 23mulcand 11923 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · i) ↔ 𝐴 = i))
4038, 39bitrd 279 . . . . . . 7 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ 𝐴 = i))
4140necon3bid 2991 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ i))
4226, 41anbi12d 631 . . . . 5 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4342pm5.32i 574 . . . 4 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
44 3anass 1095 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4543, 44bitr4i 278 . . 3 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
462, 45bitri 275 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
471, 46bitr4i 278 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  dom cdm 5700  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  arctancatan 26925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-atan 26928
This theorem is referenced by:  atanf  26941  atanneg  26968  atancj  26971  efiatan  26973  atanlogaddlem  26974  atanlogadd  26975  atanlogsublem  26976  atanlogsub  26977  efiatan2  26978  2efiatan  26979  atantan  26984  atanbndlem  26986  dvatan  26996  atantayl  26998
  Copyright terms: Public domain W3C validator