MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm2 Structured version   Visualization version   GIF version

Theorem atandm2 26814
Description: This form of atandm 26813 is a bit more useful for showing that the logarithms in df-atan 26804 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))

Proof of Theorem atandm2
StepHypRef Expression
1 atandm 26813 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
2 3anass 1094 . . 3 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)))
3 ax-1cn 11064 . . . . . . . . . 10 1 ∈ ℂ
4 ax-icn 11065 . . . . . . . . . . 11 i ∈ ℂ
5 mulcl 11090 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 690 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
7 subeq0 11387 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
83, 6, 7sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
94, 4mulneg2i 11564 . . . . . . . . . . . 12 (i · -i) = -(i · i)
10 ixi 11746 . . . . . . . . . . . . 13 (i · i) = -1
1110negeqi 11353 . . . . . . . . . . . 12 -(i · i) = --1
12 negneg1e1 12114 . . . . . . . . . . . 12 --1 = 1
139, 11, 123eqtri 2758 . . . . . . . . . . 11 (i · -i) = 1
1413eqeq2i 2744 . . . . . . . . . 10 ((i · 𝐴) = (i · -i) ↔ (i · 𝐴) = 1)
15 eqcom 2738 . . . . . . . . . 10 ((i · 𝐴) = 1 ↔ 1 = (i · 𝐴))
1614, 15bitri 275 . . . . . . . . 9 ((i · 𝐴) = (i · -i) ↔ 1 = (i · 𝐴))
178, 16bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · -i)))
18 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
194negcli 11429 . . . . . . . . . 10 -i ∈ ℂ
2019a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → -i ∈ ℂ)
214a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ∈ ℂ)
22 ine0 11552 . . . . . . . . . 10 i ≠ 0
2322a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ≠ 0)
2418, 20, 21, 23mulcand 11750 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · -i) ↔ 𝐴 = -i))
2517, 24bitrd 279 . . . . . . 7 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 𝐴 = -i))
2625necon3bid 2972 . . . . . 6 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ -i))
27 addcom 11299 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
283, 6, 27sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
29 subneg 11410 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
306, 3, 29sylancl 586 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
3128, 30eqtr4d 2769 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) − -1))
3231eqeq1d 2733 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ ((i · 𝐴) − -1) = 0))
333negcli 11429 . . . . . . . . . . 11 -1 ∈ ℂ
34 subeq0 11387 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
356, 33, 34sylancl 586 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
3632, 35bitrd 279 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = -1))
3710eqeq2i 2744 . . . . . . . . 9 ((i · 𝐴) = (i · i) ↔ (i · 𝐴) = -1)
3836, 37bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · i)))
3918, 21, 21, 23mulcand 11750 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · i) ↔ 𝐴 = i))
4038, 39bitrd 279 . . . . . . 7 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ 𝐴 = i))
4140necon3bid 2972 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ i))
4226, 41anbi12d 632 . . . . 5 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4342pm5.32i 574 . . . 4 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
44 3anass 1094 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4543, 44bitr4i 278 . . 3 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
462, 45bitri 275 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
471, 46bitr4i 278 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  dom cdm 5614  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345  arctancatan 26801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-atan 26804
This theorem is referenced by:  atanf  26817  atanneg  26844  atancj  26847  efiatan  26849  atanlogaddlem  26850  atanlogadd  26851  atanlogsublem  26852  atanlogsub  26853  efiatan2  26854  2efiatan  26855  atantan  26860  atanbndlem  26862  dvatan  26872  atantayl  26874
  Copyright terms: Public domain W3C validator