| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atandm3 | Structured version Visualization version GIF version | ||
| Description: A compact form of atandm 26824. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| atandm3 | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1094 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) | |
| 2 | atandm 26824 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | |
| 3 | ax-icn 11181 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 4 | sqeqor 14224 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → ((𝐴↑2) = (i↑2) ↔ (𝐴 = i ∨ 𝐴 = -i))) | |
| 5 | 3, 4 | mpan2 691 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = (i↑2) ↔ (𝐴 = i ∨ 𝐴 = -i))) |
| 6 | i2 14210 | . . . . . . 7 ⊢ (i↑2) = -1 | |
| 7 | 6 | eqeq2i 2747 | . . . . . 6 ⊢ ((𝐴↑2) = (i↑2) ↔ (𝐴↑2) = -1) |
| 8 | orcom 870 | . . . . . 6 ⊢ ((𝐴 = i ∨ 𝐴 = -i) ↔ (𝐴 = -i ∨ 𝐴 = i)) | |
| 9 | 5, 7, 8 | 3bitr3g 313 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = -1 ↔ (𝐴 = -i ∨ 𝐴 = i))) |
| 10 | 9 | necon3abid 2967 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))) |
| 11 | neanior 3024 | . . . 4 ⊢ ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)) | |
| 12 | 10, 11 | bitr4di 289 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
| 13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
| 14 | 1, 2, 13 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 dom cdm 5652 (class class class)co 7400 ℂcc 11120 1c1 11123 ici 11124 -cneg 11460 2c2 12288 ↑cexp 14069 arctancatan 26812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-n0 12495 df-z 12582 df-uz 12846 df-seq 14010 df-exp 14070 df-atan 26815 |
| This theorem is referenced by: atandm4 26827 atanre 26833 atandmneg 26854 atandmcj 26857 atandmtan 26868 bndatandm 26877 |
| Copyright terms: Public domain | W3C validator |