MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Structured version   Visualization version   GIF version

Theorem atancj 26820
Description: The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26817 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))

Proof of Theorem atancj
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
2 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
3 fveq2 6858 . . . . . 6 (𝐴 = -i → (ℜ‘𝐴) = (ℜ‘-i))
4 ax-icn 11127 . . . . . . . 8 i ∈ ℂ
54renegi 15146 . . . . . . 7 (ℜ‘-i) = -(ℜ‘i)
6 rei 15122 . . . . . . . 8 (ℜ‘i) = 0
76negeqi 11414 . . . . . . 7 -(ℜ‘i) = -0
8 neg0 11468 . . . . . . 7 -0 = 0
95, 7, 83eqtri 2756 . . . . . 6 (ℜ‘-i) = 0
103, 9eqtrdi 2780 . . . . 5 (𝐴 = -i → (ℜ‘𝐴) = 0)
1110necon3i 2957 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ -i)
122, 11syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ -i)
13 fveq2 6858 . . . . . 6 (𝐴 = i → (ℜ‘𝐴) = (ℜ‘i))
1413, 6eqtrdi 2780 . . . . 5 (𝐴 = i → (ℜ‘𝐴) = 0)
1514necon3i 2957 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ i)
162, 15syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ i)
17 atandm 26786 . . 3 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
181, 12, 16, 17syl3anbrc 1344 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ dom arctan)
19 halfcl 12408 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
204, 19ax-mp 5 . . . . 5 (i / 2) ∈ ℂ
21 ax-1cn 11126 . . . . . . . 8 1 ∈ ℂ
22 mulcl 11152 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
234, 1, 22sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
24 subcl 11420 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2521, 23, 24sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ∈ ℂ)
26 atandm2 26787 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2718, 26sylib 218 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2827simp2d 1143 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ≠ 0)
2925, 28logcld 26479 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
30 addcl 11150 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3121, 23, 30sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ∈ ℂ)
3227simp3d 1144 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ≠ 0)
3331, 32logcld 26479 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3429, 33subcld 11533 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
35 cjmul 15108 . . . . 5 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3620, 34, 35sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
37 2ne0 12290 . . . . . . . 8 2 ≠ 0
38 2cn 12261 . . . . . . . . 9 2 ∈ ℂ
394, 38cjdivi 15157 . . . . . . . 8 (2 ≠ 0 → (∗‘(i / 2)) = ((∗‘i) / (∗‘2)))
4037, 39ax-mp 5 . . . . . . 7 (∗‘(i / 2)) = ((∗‘i) / (∗‘2))
41 divneg 11874 . . . . . . . . 9 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(i / 2) = (-i / 2))
424, 38, 37, 41mp3an 1463 . . . . . . . 8 -(i / 2) = (-i / 2)
43 cji 15125 . . . . . . . . 9 (∗‘i) = -i
44 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
45 cjre 15105 . . . . . . . . . 10 (2 ∈ ℝ → (∗‘2) = 2)
4644, 45ax-mp 5 . . . . . . . . 9 (∗‘2) = 2
4743, 46oveq12i 7399 . . . . . . . 8 ((∗‘i) / (∗‘2)) = (-i / 2)
4842, 47eqtr4i 2755 . . . . . . 7 -(i / 2) = ((∗‘i) / (∗‘2))
4940, 48eqtr4i 2755 . . . . . 6 (∗‘(i / 2)) = -(i / 2)
5049oveq1i 7397 . . . . 5 ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
5134cjcld 15162 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ)
52 mulneg12 11616 . . . . . 6 (((i / 2) ∈ ℂ ∧ (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5320, 51, 52sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5450, 53eqtrid 2776 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
55 cjsub 15115 . . . . . . . . 9 (((log‘(1 − (i · 𝐴))) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
5629, 33, 55syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
57 imsub 15101 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
5821, 23, 57sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
59 reim 15075 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6059adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6160oveq2d 7403 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘1) − (ℜ‘𝐴)) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
6258, 61eqtr4d 2767 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℜ‘𝐴)))
63 df-neg 11408 . . . . . . . . . . . . . 14 -(ℜ‘𝐴) = (0 − (ℜ‘𝐴))
64 im1 15121 . . . . . . . . . . . . . . 15 (ℑ‘1) = 0
6564oveq1i 7397 . . . . . . . . . . . . . 14 ((ℑ‘1) − (ℜ‘𝐴)) = (0 − (ℜ‘𝐴))
6663, 65eqtr4i 2755 . . . . . . . . . . . . 13 -(ℜ‘𝐴) = ((ℑ‘1) − (ℜ‘𝐴))
6762, 66eqtr4di 2782 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
68 recl 15076 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
7069recnd 11202 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
7170, 2negne0d 11531 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(ℜ‘𝐴) ≠ 0)
7267, 71eqnetrd 2992 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) ≠ 0)
73 logcj 26515 . . . . . . . . . . 11 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
7425, 72, 73syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
75 cjsub 15115 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
7621, 23, 75sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
77 1re 11174 . . . . . . . . . . . . . 14 1 ∈ ℝ
78 cjre 15105 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (∗‘1) = 1)
7977, 78mp1i 13 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘1) = 1)
80 cjmul 15108 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
814, 1, 80sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
8243oveq1i 7397 . . . . . . . . . . . . . . 15 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
83 cjcl 15071 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
8483adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
85 mulneg1 11614 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
864, 84, 85sylancr 587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8782, 86eqtrid 2776 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘i) · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8881, 87eqtrd 2764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = -(i · (∗‘𝐴)))
8979, 88oveq12d 7405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) − (∗‘(i · 𝐴))) = (1 − -(i · (∗‘𝐴))))
90 mulcl 11152 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (i · (∗‘𝐴)) ∈ ℂ)
914, 84, 90sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (∗‘𝐴)) ∈ ℂ)
92 subneg 11471 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9321, 91, 92sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9476, 89, 933eqtrd 2768 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = (1 + (i · (∗‘𝐴))))
9594fveq2d 6862 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
9674, 95eqtr3d 2766 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
97 imadd 15100 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9821, 23, 97sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9960oveq2d 7403 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (0 + (ℑ‘(i · 𝐴))))
10064oveq1i 7397 . . . . . . . . . . . . . 14 ((ℑ‘1) + (ℑ‘(i · 𝐴))) = (0 + (ℑ‘(i · 𝐴)))
10199, 100eqtr4di 2782 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
10270addlidd 11375 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
10398, 101, 1023eqtr2d 2770 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
104103, 2eqnetrd 2992 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) ≠ 0)
105 logcj 26515 . . . . . . . . . . 11 (((1 + (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 + (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
10631, 104, 105syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
107 cjadd 15107 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10821, 23, 107sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10979, 88oveq12d 7405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) + (∗‘(i · 𝐴))) = (1 + -(i · (∗‘𝐴))))
110 negsub 11470 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
11121, 91, 110sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
112108, 109, 1113eqtrd 2768 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = (1 − (i · (∗‘𝐴))))
113112fveq2d 6862 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
114106, 113eqtr3d 2766 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
11596, 114oveq12d 7405 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
11656, 115eqtrd 2764 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
117116negeqd 11415 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
118 addcl 11150 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
11921, 91, 118sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
120 atandmcj 26819 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
12118, 120syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ dom arctan)
122 atandm2 26787 . . . . . . . . . 10 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ (1 − (i · (∗‘𝐴))) ≠ 0 ∧ (1 + (i · (∗‘𝐴))) ≠ 0))
123122simp3bi 1147 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 + (i · (∗‘𝐴))) ≠ 0)
124121, 123syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ≠ 0)
125119, 124logcld 26479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · (∗‘𝐴)))) ∈ ℂ)
126 subcl 11420 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
12721, 91, 126sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
128122simp2bi 1146 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 − (i · (∗‘𝐴))) ≠ 0)
129121, 128syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ≠ 0)
130127, 129logcld 26479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · (∗‘𝐴)))) ∈ ℂ)
131125, 130negsubdi2d 11549 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
132117, 131eqtrd 2764 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
133132oveq2d 7403 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
13436, 54, 1333eqtrd 2768 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
135 atanval 26794 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
13618, 135syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
137136fveq2d 6862 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
138 atanval 26794 . . . 4 ((∗‘𝐴) ∈ dom arctan → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
139121, 138syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
140134, 137, 1393eqtr4d 2774 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))
14118, 140jca 511 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  ccj 15062  cre 15063  cim 15064  logclog 26463  arctancatan 26774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-atan 26777
This theorem is referenced by:  atanrecl  26821
  Copyright terms: Public domain W3C validator