Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Structured version   Visualization version   GIF version

Theorem atancj 25499
 Description: The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 25496 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))

Proof of Theorem atancj
StepHypRef Expression
1 simpl 486 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
2 simpr 488 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
3 fveq2 6649 . . . . . 6 (𝐴 = -i → (ℜ‘𝐴) = (ℜ‘-i))
4 ax-icn 10589 . . . . . . . 8 i ∈ ℂ
54renegi 14534 . . . . . . 7 (ℜ‘-i) = -(ℜ‘i)
6 rei 14510 . . . . . . . 8 (ℜ‘i) = 0
76negeqi 10872 . . . . . . 7 -(ℜ‘i) = -0
8 neg0 10925 . . . . . . 7 -0 = 0
95, 7, 83eqtri 2828 . . . . . 6 (ℜ‘-i) = 0
103, 9eqtrdi 2852 . . . . 5 (𝐴 = -i → (ℜ‘𝐴) = 0)
1110necon3i 3022 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ -i)
122, 11syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ -i)
13 fveq2 6649 . . . . . 6 (𝐴 = i → (ℜ‘𝐴) = (ℜ‘i))
1413, 6eqtrdi 2852 . . . . 5 (𝐴 = i → (ℜ‘𝐴) = 0)
1514necon3i 3022 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ i)
162, 15syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ i)
17 atandm 25465 . . 3 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
181, 12, 16, 17syl3anbrc 1340 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ dom arctan)
19 halfcl 11854 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
204, 19ax-mp 5 . . . . 5 (i / 2) ∈ ℂ
21 ax-1cn 10588 . . . . . . . 8 1 ∈ ℂ
22 mulcl 10614 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
234, 1, 22sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
24 subcl 10878 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2521, 23, 24sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ∈ ℂ)
26 atandm2 25466 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2718, 26sylib 221 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2827simp2d 1140 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ≠ 0)
2925, 28logcld 25165 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
30 addcl 10612 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3121, 23, 30sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ∈ ℂ)
3227simp3d 1141 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ≠ 0)
3331, 32logcld 25165 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3429, 33subcld 10990 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
35 cjmul 14496 . . . . 5 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3620, 34, 35sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
37 2ne0 11733 . . . . . . . 8 2 ≠ 0
38 2cn 11704 . . . . . . . . 9 2 ∈ ℂ
394, 38cjdivi 14545 . . . . . . . 8 (2 ≠ 0 → (∗‘(i / 2)) = ((∗‘i) / (∗‘2)))
4037, 39ax-mp 5 . . . . . . 7 (∗‘(i / 2)) = ((∗‘i) / (∗‘2))
41 divneg 11325 . . . . . . . . 9 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(i / 2) = (-i / 2))
424, 38, 37, 41mp3an 1458 . . . . . . . 8 -(i / 2) = (-i / 2)
43 cji 14513 . . . . . . . . 9 (∗‘i) = -i
44 2re 11703 . . . . . . . . . 10 2 ∈ ℝ
45 cjre 14493 . . . . . . . . . 10 (2 ∈ ℝ → (∗‘2) = 2)
4644, 45ax-mp 5 . . . . . . . . 9 (∗‘2) = 2
4743, 46oveq12i 7151 . . . . . . . 8 ((∗‘i) / (∗‘2)) = (-i / 2)
4842, 47eqtr4i 2827 . . . . . . 7 -(i / 2) = ((∗‘i) / (∗‘2))
4940, 48eqtr4i 2827 . . . . . 6 (∗‘(i / 2)) = -(i / 2)
5049oveq1i 7149 . . . . 5 ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
5134cjcld 14550 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ)
52 mulneg12 11071 . . . . . 6 (((i / 2) ∈ ℂ ∧ (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5320, 51, 52sylancr 590 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5450, 53syl5eq 2848 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
55 cjsub 14503 . . . . . . . . 9 (((log‘(1 − (i · 𝐴))) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
5629, 33, 55syl2anc 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
57 imsub 14489 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
5821, 23, 57sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
59 reim 14463 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6059adantr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6160oveq2d 7155 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘1) − (ℜ‘𝐴)) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
6258, 61eqtr4d 2839 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℜ‘𝐴)))
63 df-neg 10866 . . . . . . . . . . . . . 14 -(ℜ‘𝐴) = (0 − (ℜ‘𝐴))
64 im1 14509 . . . . . . . . . . . . . . 15 (ℑ‘1) = 0
6564oveq1i 7149 . . . . . . . . . . . . . 14 ((ℑ‘1) − (ℜ‘𝐴)) = (0 − (ℜ‘𝐴))
6663, 65eqtr4i 2827 . . . . . . . . . . . . 13 -(ℜ‘𝐴) = ((ℑ‘1) − (ℜ‘𝐴))
6762, 66eqtr4di 2854 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
68 recl 14464 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
6968adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
7069recnd 10662 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
7170, 2negne0d 10988 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(ℜ‘𝐴) ≠ 0)
7267, 71eqnetrd 3057 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) ≠ 0)
73 logcj 25200 . . . . . . . . . . 11 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
7425, 72, 73syl2anc 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
75 cjsub 14503 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
7621, 23, 75sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
77 1re 10634 . . . . . . . . . . . . . 14 1 ∈ ℝ
78 cjre 14493 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (∗‘1) = 1)
7977, 78mp1i 13 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘1) = 1)
80 cjmul 14496 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
814, 1, 80sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
8243oveq1i 7149 . . . . . . . . . . . . . . 15 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
83 cjcl 14459 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
8483adantr 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
85 mulneg1 11069 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
864, 84, 85sylancr 590 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8782, 86syl5eq 2848 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘i) · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8881, 87eqtrd 2836 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = -(i · (∗‘𝐴)))
8979, 88oveq12d 7157 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) − (∗‘(i · 𝐴))) = (1 − -(i · (∗‘𝐴))))
90 mulcl 10614 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (i · (∗‘𝐴)) ∈ ℂ)
914, 84, 90sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (∗‘𝐴)) ∈ ℂ)
92 subneg 10928 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9321, 91, 92sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9476, 89, 933eqtrd 2840 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = (1 + (i · (∗‘𝐴))))
9594fveq2d 6653 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
9674, 95eqtr3d 2838 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
97 imadd 14488 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9821, 23, 97sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9960oveq2d 7155 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (0 + (ℑ‘(i · 𝐴))))
10064oveq1i 7149 . . . . . . . . . . . . . 14 ((ℑ‘1) + (ℑ‘(i · 𝐴))) = (0 + (ℑ‘(i · 𝐴)))
10199, 100eqtr4di 2854 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
10270addid2d 10834 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
10398, 101, 1023eqtr2d 2842 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
104103, 2eqnetrd 3057 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) ≠ 0)
105 logcj 25200 . . . . . . . . . . 11 (((1 + (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 + (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
10631, 104, 105syl2anc 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
107 cjadd 14495 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10821, 23, 107sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10979, 88oveq12d 7157 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) + (∗‘(i · 𝐴))) = (1 + -(i · (∗‘𝐴))))
110 negsub 10927 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
11121, 91, 110sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
112108, 109, 1113eqtrd 2840 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = (1 − (i · (∗‘𝐴))))
113112fveq2d 6653 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
114106, 113eqtr3d 2838 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
11596, 114oveq12d 7157 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
11656, 115eqtrd 2836 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
117116negeqd 10873 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
118 addcl 10612 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
11921, 91, 118sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
120 atandmcj 25498 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
12118, 120syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ dom arctan)
122 atandm2 25466 . . . . . . . . . 10 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ (1 − (i · (∗‘𝐴))) ≠ 0 ∧ (1 + (i · (∗‘𝐴))) ≠ 0))
123122simp3bi 1144 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 + (i · (∗‘𝐴))) ≠ 0)
124121, 123syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ≠ 0)
125119, 124logcld 25165 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · (∗‘𝐴)))) ∈ ℂ)
126 subcl 10878 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
12721, 91, 126sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
128122simp2bi 1143 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 − (i · (∗‘𝐴))) ≠ 0)
129121, 128syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ≠ 0)
130127, 129logcld 25165 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · (∗‘𝐴)))) ∈ ℂ)
131125, 130negsubdi2d 11006 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
132117, 131eqtrd 2836 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
133132oveq2d 7155 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
13436, 54, 1333eqtrd 2840 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
135 atanval 25473 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
13618, 135syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
137136fveq2d 6653 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
138 atanval 25473 . . . 4 ((∗‘𝐴) ∈ dom arctan → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
139121, 138syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
140134, 137, 1393eqtr4d 2846 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))
14118, 140jca 515 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  dom cdm 5523  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531  ici 10532   + caddc 10533   · cmul 10535   − cmin 10863  -cneg 10864   / cdiv 11290  2c2 11684  ∗ccj 14450  ℜcre 14451  ℑcim 14452  logclog 25149  arctancatan 25453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24472  df-dv 24473  df-log 25151  df-atan 25456 This theorem is referenced by:  atanrecl  25500
 Copyright terms: Public domain W3C validator