MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Structured version   Visualization version   GIF version

Theorem atancj 26877
Description: The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26874 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))

Proof of Theorem atancj
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
2 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
3 fveq2 6881 . . . . . 6 (𝐴 = -i → (ℜ‘𝐴) = (ℜ‘-i))
4 ax-icn 11193 . . . . . . . 8 i ∈ ℂ
54renegi 15204 . . . . . . 7 (ℜ‘-i) = -(ℜ‘i)
6 rei 15180 . . . . . . . 8 (ℜ‘i) = 0
76negeqi 11480 . . . . . . 7 -(ℜ‘i) = -0
8 neg0 11534 . . . . . . 7 -0 = 0
95, 7, 83eqtri 2763 . . . . . 6 (ℜ‘-i) = 0
103, 9eqtrdi 2787 . . . . 5 (𝐴 = -i → (ℜ‘𝐴) = 0)
1110necon3i 2965 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ -i)
122, 11syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ -i)
13 fveq2 6881 . . . . . 6 (𝐴 = i → (ℜ‘𝐴) = (ℜ‘i))
1413, 6eqtrdi 2787 . . . . 5 (𝐴 = i → (ℜ‘𝐴) = 0)
1514necon3i 2965 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ i)
162, 15syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ i)
17 atandm 26843 . . 3 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
181, 12, 16, 17syl3anbrc 1344 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ dom arctan)
19 halfcl 12472 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
204, 19ax-mp 5 . . . . 5 (i / 2) ∈ ℂ
21 ax-1cn 11192 . . . . . . . 8 1 ∈ ℂ
22 mulcl 11218 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
234, 1, 22sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
24 subcl 11486 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2521, 23, 24sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ∈ ℂ)
26 atandm2 26844 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2718, 26sylib 218 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2827simp2d 1143 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ≠ 0)
2925, 28logcld 26536 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
30 addcl 11216 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3121, 23, 30sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ∈ ℂ)
3227simp3d 1144 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ≠ 0)
3331, 32logcld 26536 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3429, 33subcld 11599 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
35 cjmul 15166 . . . . 5 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3620, 34, 35sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
37 2ne0 12349 . . . . . . . 8 2 ≠ 0
38 2cn 12320 . . . . . . . . 9 2 ∈ ℂ
394, 38cjdivi 15215 . . . . . . . 8 (2 ≠ 0 → (∗‘(i / 2)) = ((∗‘i) / (∗‘2)))
4037, 39ax-mp 5 . . . . . . 7 (∗‘(i / 2)) = ((∗‘i) / (∗‘2))
41 divneg 11938 . . . . . . . . 9 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(i / 2) = (-i / 2))
424, 38, 37, 41mp3an 1463 . . . . . . . 8 -(i / 2) = (-i / 2)
43 cji 15183 . . . . . . . . 9 (∗‘i) = -i
44 2re 12319 . . . . . . . . . 10 2 ∈ ℝ
45 cjre 15163 . . . . . . . . . 10 (2 ∈ ℝ → (∗‘2) = 2)
4644, 45ax-mp 5 . . . . . . . . 9 (∗‘2) = 2
4743, 46oveq12i 7422 . . . . . . . 8 ((∗‘i) / (∗‘2)) = (-i / 2)
4842, 47eqtr4i 2762 . . . . . . 7 -(i / 2) = ((∗‘i) / (∗‘2))
4940, 48eqtr4i 2762 . . . . . 6 (∗‘(i / 2)) = -(i / 2)
5049oveq1i 7420 . . . . 5 ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
5134cjcld 15220 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ)
52 mulneg12 11680 . . . . . 6 (((i / 2) ∈ ℂ ∧ (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5320, 51, 52sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5450, 53eqtrid 2783 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
55 cjsub 15173 . . . . . . . . 9 (((log‘(1 − (i · 𝐴))) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
5629, 33, 55syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
57 imsub 15159 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
5821, 23, 57sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
59 reim 15133 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6059adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6160oveq2d 7426 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘1) − (ℜ‘𝐴)) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
6258, 61eqtr4d 2774 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℜ‘𝐴)))
63 df-neg 11474 . . . . . . . . . . . . . 14 -(ℜ‘𝐴) = (0 − (ℜ‘𝐴))
64 im1 15179 . . . . . . . . . . . . . . 15 (ℑ‘1) = 0
6564oveq1i 7420 . . . . . . . . . . . . . 14 ((ℑ‘1) − (ℜ‘𝐴)) = (0 − (ℜ‘𝐴))
6663, 65eqtr4i 2762 . . . . . . . . . . . . 13 -(ℜ‘𝐴) = ((ℑ‘1) − (ℜ‘𝐴))
6762, 66eqtr4di 2789 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
68 recl 15134 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
7069recnd 11268 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
7170, 2negne0d 11597 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(ℜ‘𝐴) ≠ 0)
7267, 71eqnetrd 3000 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) ≠ 0)
73 logcj 26572 . . . . . . . . . . 11 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
7425, 72, 73syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
75 cjsub 15173 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
7621, 23, 75sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
77 1re 11240 . . . . . . . . . . . . . 14 1 ∈ ℝ
78 cjre 15163 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (∗‘1) = 1)
7977, 78mp1i 13 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘1) = 1)
80 cjmul 15166 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
814, 1, 80sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
8243oveq1i 7420 . . . . . . . . . . . . . . 15 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
83 cjcl 15129 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
8483adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
85 mulneg1 11678 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
864, 84, 85sylancr 587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8782, 86eqtrid 2783 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘i) · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8881, 87eqtrd 2771 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = -(i · (∗‘𝐴)))
8979, 88oveq12d 7428 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) − (∗‘(i · 𝐴))) = (1 − -(i · (∗‘𝐴))))
90 mulcl 11218 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (i · (∗‘𝐴)) ∈ ℂ)
914, 84, 90sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (∗‘𝐴)) ∈ ℂ)
92 subneg 11537 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9321, 91, 92sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9476, 89, 933eqtrd 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = (1 + (i · (∗‘𝐴))))
9594fveq2d 6885 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
9674, 95eqtr3d 2773 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
97 imadd 15158 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9821, 23, 97sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9960oveq2d 7426 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (0 + (ℑ‘(i · 𝐴))))
10064oveq1i 7420 . . . . . . . . . . . . . 14 ((ℑ‘1) + (ℑ‘(i · 𝐴))) = (0 + (ℑ‘(i · 𝐴)))
10199, 100eqtr4di 2789 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
10270addlidd 11441 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
10398, 101, 1023eqtr2d 2777 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
104103, 2eqnetrd 3000 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) ≠ 0)
105 logcj 26572 . . . . . . . . . . 11 (((1 + (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 + (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
10631, 104, 105syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
107 cjadd 15165 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10821, 23, 107sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10979, 88oveq12d 7428 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) + (∗‘(i · 𝐴))) = (1 + -(i · (∗‘𝐴))))
110 negsub 11536 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
11121, 91, 110sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
112108, 109, 1113eqtrd 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = (1 − (i · (∗‘𝐴))))
113112fveq2d 6885 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
114106, 113eqtr3d 2773 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
11596, 114oveq12d 7428 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
11656, 115eqtrd 2771 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
117116negeqd 11481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
118 addcl 11216 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
11921, 91, 118sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
120 atandmcj 26876 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
12118, 120syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ dom arctan)
122 atandm2 26844 . . . . . . . . . 10 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ (1 − (i · (∗‘𝐴))) ≠ 0 ∧ (1 + (i · (∗‘𝐴))) ≠ 0))
123122simp3bi 1147 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 + (i · (∗‘𝐴))) ≠ 0)
124121, 123syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ≠ 0)
125119, 124logcld 26536 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · (∗‘𝐴)))) ∈ ℂ)
126 subcl 11486 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
12721, 91, 126sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
128122simp2bi 1146 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 − (i · (∗‘𝐴))) ≠ 0)
129121, 128syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ≠ 0)
130127, 129logcld 26536 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · (∗‘𝐴)))) ∈ ℂ)
131125, 130negsubdi2d 11615 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
132117, 131eqtrd 2771 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
133132oveq2d 7426 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
13436, 54, 1333eqtrd 2775 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
135 atanval 26851 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
13618, 135syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
137136fveq2d 6885 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
138 atanval 26851 . . . 4 ((∗‘𝐴) ∈ dom arctan → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
139121, 138syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
140134, 137, 1393eqtr4d 2781 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))
14118, 140jca 511 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  dom cdm 5659  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  ccj 15120  cre 15121  cim 15122  logclog 26520  arctancatan 26831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-atan 26834
This theorem is referenced by:  atanrecl  26878
  Copyright terms: Public domain W3C validator