MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Structured version   Visualization version   GIF version

Theorem atancj 26260
Description: The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26257 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))

Proof of Theorem atancj
StepHypRef Expression
1 simpl 483 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
2 simpr 485 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
3 fveq2 6842 . . . . . 6 (𝐴 = -i → (ℜ‘𝐴) = (ℜ‘-i))
4 ax-icn 11110 . . . . . . . 8 i ∈ ℂ
54renegi 15065 . . . . . . 7 (ℜ‘-i) = -(ℜ‘i)
6 rei 15041 . . . . . . . 8 (ℜ‘i) = 0
76negeqi 11394 . . . . . . 7 -(ℜ‘i) = -0
8 neg0 11447 . . . . . . 7 -0 = 0
95, 7, 83eqtri 2768 . . . . . 6 (ℜ‘-i) = 0
103, 9eqtrdi 2792 . . . . 5 (𝐴 = -i → (ℜ‘𝐴) = 0)
1110necon3i 2976 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ -i)
122, 11syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ -i)
13 fveq2 6842 . . . . . 6 (𝐴 = i → (ℜ‘𝐴) = (ℜ‘i))
1413, 6eqtrdi 2792 . . . . 5 (𝐴 = i → (ℜ‘𝐴) = 0)
1514necon3i 2976 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ i)
162, 15syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ i)
17 atandm 26226 . . 3 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
181, 12, 16, 17syl3anbrc 1343 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ dom arctan)
19 halfcl 12378 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
204, 19ax-mp 5 . . . . 5 (i / 2) ∈ ℂ
21 ax-1cn 11109 . . . . . . . 8 1 ∈ ℂ
22 mulcl 11135 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
234, 1, 22sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
24 subcl 11400 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2521, 23, 24sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ∈ ℂ)
26 atandm2 26227 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2718, 26sylib 217 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2827simp2d 1143 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ≠ 0)
2925, 28logcld 25926 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
30 addcl 11133 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3121, 23, 30sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ∈ ℂ)
3227simp3d 1144 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ≠ 0)
3331, 32logcld 25926 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3429, 33subcld 11512 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
35 cjmul 15027 . . . . 5 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3620, 34, 35sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
37 2ne0 12257 . . . . . . . 8 2 ≠ 0
38 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
394, 38cjdivi 15076 . . . . . . . 8 (2 ≠ 0 → (∗‘(i / 2)) = ((∗‘i) / (∗‘2)))
4037, 39ax-mp 5 . . . . . . 7 (∗‘(i / 2)) = ((∗‘i) / (∗‘2))
41 divneg 11847 . . . . . . . . 9 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(i / 2) = (-i / 2))
424, 38, 37, 41mp3an 1461 . . . . . . . 8 -(i / 2) = (-i / 2)
43 cji 15044 . . . . . . . . 9 (∗‘i) = -i
44 2re 12227 . . . . . . . . . 10 2 ∈ ℝ
45 cjre 15024 . . . . . . . . . 10 (2 ∈ ℝ → (∗‘2) = 2)
4644, 45ax-mp 5 . . . . . . . . 9 (∗‘2) = 2
4743, 46oveq12i 7369 . . . . . . . 8 ((∗‘i) / (∗‘2)) = (-i / 2)
4842, 47eqtr4i 2767 . . . . . . 7 -(i / 2) = ((∗‘i) / (∗‘2))
4940, 48eqtr4i 2767 . . . . . 6 (∗‘(i / 2)) = -(i / 2)
5049oveq1i 7367 . . . . 5 ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
5134cjcld 15081 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ)
52 mulneg12 11593 . . . . . 6 (((i / 2) ∈ ℂ ∧ (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5320, 51, 52sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5450, 53eqtrid 2788 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
55 cjsub 15034 . . . . . . . . 9 (((log‘(1 − (i · 𝐴))) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
5629, 33, 55syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
57 imsub 15020 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
5821, 23, 57sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
59 reim 14994 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6059adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6160oveq2d 7373 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘1) − (ℜ‘𝐴)) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
6258, 61eqtr4d 2779 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℜ‘𝐴)))
63 df-neg 11388 . . . . . . . . . . . . . 14 -(ℜ‘𝐴) = (0 − (ℜ‘𝐴))
64 im1 15040 . . . . . . . . . . . . . . 15 (ℑ‘1) = 0
6564oveq1i 7367 . . . . . . . . . . . . . 14 ((ℑ‘1) − (ℜ‘𝐴)) = (0 − (ℜ‘𝐴))
6663, 65eqtr4i 2767 . . . . . . . . . . . . 13 -(ℜ‘𝐴) = ((ℑ‘1) − (ℜ‘𝐴))
6762, 66eqtr4di 2794 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
68 recl 14995 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
6968adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
7069recnd 11183 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
7170, 2negne0d 11510 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(ℜ‘𝐴) ≠ 0)
7267, 71eqnetrd 3011 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) ≠ 0)
73 logcj 25961 . . . . . . . . . . 11 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
7425, 72, 73syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
75 cjsub 15034 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
7621, 23, 75sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
77 1re 11155 . . . . . . . . . . . . . 14 1 ∈ ℝ
78 cjre 15024 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (∗‘1) = 1)
7977, 78mp1i 13 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘1) = 1)
80 cjmul 15027 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
814, 1, 80sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
8243oveq1i 7367 . . . . . . . . . . . . . . 15 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
83 cjcl 14990 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
8483adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
85 mulneg1 11591 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
864, 84, 85sylancr 587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8782, 86eqtrid 2788 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘i) · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8881, 87eqtrd 2776 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = -(i · (∗‘𝐴)))
8979, 88oveq12d 7375 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) − (∗‘(i · 𝐴))) = (1 − -(i · (∗‘𝐴))))
90 mulcl 11135 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (i · (∗‘𝐴)) ∈ ℂ)
914, 84, 90sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (∗‘𝐴)) ∈ ℂ)
92 subneg 11450 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9321, 91, 92sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9476, 89, 933eqtrd 2780 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = (1 + (i · (∗‘𝐴))))
9594fveq2d 6846 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
9674, 95eqtr3d 2778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
97 imadd 15019 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9821, 23, 97sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9960oveq2d 7373 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (0 + (ℑ‘(i · 𝐴))))
10064oveq1i 7367 . . . . . . . . . . . . . 14 ((ℑ‘1) + (ℑ‘(i · 𝐴))) = (0 + (ℑ‘(i · 𝐴)))
10199, 100eqtr4di 2794 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
10270addid2d 11356 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
10398, 101, 1023eqtr2d 2782 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
104103, 2eqnetrd 3011 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) ≠ 0)
105 logcj 25961 . . . . . . . . . . 11 (((1 + (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 + (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
10631, 104, 105syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
107 cjadd 15026 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10821, 23, 107sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10979, 88oveq12d 7375 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) + (∗‘(i · 𝐴))) = (1 + -(i · (∗‘𝐴))))
110 negsub 11449 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
11121, 91, 110sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
112108, 109, 1113eqtrd 2780 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = (1 − (i · (∗‘𝐴))))
113112fveq2d 6846 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
114106, 113eqtr3d 2778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
11596, 114oveq12d 7375 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
11656, 115eqtrd 2776 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
117116negeqd 11395 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
118 addcl 11133 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
11921, 91, 118sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
120 atandmcj 26259 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
12118, 120syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ dom arctan)
122 atandm2 26227 . . . . . . . . . 10 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ (1 − (i · (∗‘𝐴))) ≠ 0 ∧ (1 + (i · (∗‘𝐴))) ≠ 0))
123122simp3bi 1147 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 + (i · (∗‘𝐴))) ≠ 0)
124121, 123syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ≠ 0)
125119, 124logcld 25926 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · (∗‘𝐴)))) ∈ ℂ)
126 subcl 11400 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
12721, 91, 126sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
128122simp2bi 1146 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 − (i · (∗‘𝐴))) ≠ 0)
129121, 128syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ≠ 0)
130127, 129logcld 25926 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · (∗‘𝐴)))) ∈ ℂ)
131125, 130negsubdi2d 11528 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
132117, 131eqtrd 2776 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
133132oveq2d 7373 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
13436, 54, 1333eqtrd 2780 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
135 atanval 26234 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
13618, 135syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
137136fveq2d 6846 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
138 atanval 26234 . . . 4 ((∗‘𝐴) ∈ dom arctan → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
139121, 138syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
140134, 137, 1393eqtr4d 2786 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))
14118, 140jca 512 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  ccj 14981  cre 14982  cim 14983  logclog 25910  arctancatan 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-atan 26217
This theorem is referenced by:  atanrecl  26261
  Copyright terms: Public domain W3C validator