Step | Hyp | Ref
| Expression |
1 | | cnelprrecn 11209 |
. . . . 5
β’ β
β {β, β} |
2 | 1 | a1i 11 |
. . . 4
β’ (β€
β β β {β, β}) |
3 | | ax-1cn 11174 |
. . . . . . 7
β’ 1 β
β |
4 | | ax-icn 11175 |
. . . . . . . 8
β’ i β
β |
5 | | atansopn.d |
. . . . . . . . . . . 12
β’ π· = (β β
(-β(,]0)) |
6 | | atansopn.s |
. . . . . . . . . . . 12
β’ π = {π¦ β β β£ (1 + (π¦β2)) β π·} |
7 | 5, 6 | atansssdm 26779 |
. . . . . . . . . . 11
β’ π β dom
arctan |
8 | | simpr 484 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β π₯ β π) |
9 | 7, 8 | sselid 3980 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β π₯ β dom
arctan) |
10 | | atandm2 26723 |
. . . . . . . . . 10
β’ (π₯ β dom arctan β (π₯ β β β§ (1 β
(i Β· π₯)) β 0
β§ (1 + (i Β· π₯))
β 0)) |
11 | 9, 10 | sylib 217 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (π₯ β β β§ (1 β
(i Β· π₯)) β 0
β§ (1 + (i Β· π₯))
β 0)) |
12 | 11 | simp1d 1141 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β π₯ β
β) |
13 | | mulcl 11200 |
. . . . . . . 8
β’ ((i
β β β§ π₯
β β) β (i Β· π₯) β β) |
14 | 4, 12, 13 | sylancr 586 |
. . . . . . 7
β’
((β€ β§ π₯
β π) β (i
Β· π₯) β
β) |
15 | | subcl 11466 |
. . . . . . 7
β’ ((1
β β β§ (i Β· π₯) β β) β (1 β (i
Β· π₯)) β
β) |
16 | 3, 14, 15 | sylancr 586 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (1 β
(i Β· π₯)) β
β) |
17 | 11 | simp2d 1142 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (1 β
(i Β· π₯)) β
0) |
18 | 16, 17 | logcld 26419 |
. . . . 5
β’
((β€ β§ π₯
β π) β
(logβ(1 β (i Β· π₯))) β β) |
19 | | addcl 11198 |
. . . . . . 7
β’ ((1
β β β§ (i Β· π₯) β β) β (1 + (i Β·
π₯)) β
β) |
20 | 3, 14, 19 | sylancr 586 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (1 + (i
Β· π₯)) β
β) |
21 | 11 | simp3d 1143 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (1 + (i
Β· π₯)) β
0) |
22 | 20, 21 | logcld 26419 |
. . . . 5
β’
((β€ β§ π₯
β π) β
(logβ(1 + (i Β· π₯))) β β) |
23 | 18, 22 | subcld 11578 |
. . . 4
β’
((β€ β§ π₯
β π) β
((logβ(1 β (i Β· π₯))) β (logβ(1 + (i Β· π₯)))) β
β) |
24 | | ovexd 7447 |
. . . 4
β’
((β€ β§ π₯
β π) β ((2 / i) /
(1 + (π₯β2))) β
V) |
25 | | ovexd 7447 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (1 /
(π₯ + i)) β
V) |
26 | 5, 6 | atans2 26777 |
. . . . . . . . . 10
β’ (π₯ β π β (π₯ β β β§ (1 β (i Β·
π₯)) β π· β§ (1 + (i Β· π₯)) β π·)) |
27 | 26 | simp2bi 1145 |
. . . . . . . . 9
β’ (π₯ β π β (1 β (i Β· π₯)) β π·) |
28 | 27 | adantl 481 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β (1 β
(i Β· π₯)) β
π·) |
29 | | negex 11465 |
. . . . . . . . 9
β’ -i β
V |
30 | 29 | a1i 11 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β -i β
V) |
31 | 5 | logdmss 26490 |
. . . . . . . . . 10
β’ π· β (β β
{0}) |
32 | | simpr 484 |
. . . . . . . . . 10
β’
((β€ β§ π¦
β π·) β π¦ β π·) |
33 | 31, 32 | sselid 3980 |
. . . . . . . . 9
β’
((β€ β§ π¦
β π·) β π¦ β (β β
{0})) |
34 | | logf1o 26413 |
. . . . . . . . . . 11
β’
log:(β β {0})β1-1-ontoβran
log |
35 | | f1of 6833 |
. . . . . . . . . . 11
β’
(log:(β β {0})β1-1-ontoβran
log β log:(β β {0})βΆran log) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . 10
β’
log:(β β {0})βΆran log |
37 | 36 | ffvelcdmi 7085 |
. . . . . . . . 9
β’ (π¦ β (β β {0})
β (logβπ¦) β
ran log) |
38 | | logrncn 26411 |
. . . . . . . . 9
β’
((logβπ¦)
β ran log β (logβπ¦) β β) |
39 | 33, 37, 38 | 3syl 18 |
. . . . . . . 8
β’
((β€ β§ π¦
β π·) β
(logβπ¦) β
β) |
40 | | ovexd 7447 |
. . . . . . . 8
β’
((β€ β§ π¦
β π·) β (1 / π¦) β V) |
41 | 4 | a1i 11 |
. . . . . . . . . . 11
β’ (β€
β i β β) |
42 | 41, 13 | sylan 579 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β β) β (i Β· π₯) β β) |
43 | 3, 42, 15 | sylancr 586 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β) β (1 β (i Β· π₯)) β β) |
44 | 29 | a1i 11 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β) β -i β V) |
45 | | 1cnd 11216 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β) β 1 β β) |
46 | | 0cnd 11214 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β) β 0 β β) |
47 | | 1cnd 11216 |
. . . . . . . . . . . 12
β’ (β€
β 1 β β) |
48 | 2, 47 | dvmptc 25810 |
. . . . . . . . . . 11
β’ (β€
β (β D (π₯ β
β β¦ 1)) = (π₯
β β β¦ 0)) |
49 | 4 | a1i 11 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β) β i β β) |
50 | | simpr 484 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β β) β π₯
β β) |
51 | 2 | dvmptid 25809 |
. . . . . . . . . . . . 13
β’ (β€
β (β D (π₯ β
β β¦ π₯)) =
(π₯ β β β¦
1)) |
52 | 2, 50, 45, 51, 41 | dvmptcmul 25816 |
. . . . . . . . . . . 12
β’ (β€
β (β D (π₯ β
β β¦ (i Β· π₯))) = (π₯ β β β¦ (i Β·
1))) |
53 | 4 | mulridi 11225 |
. . . . . . . . . . . . 13
β’ (i
Β· 1) = i |
54 | 53 | mpteq2i 5253 |
. . . . . . . . . . . 12
β’ (π₯ β β β¦ (i
Β· 1)) = (π₯ β
β β¦ i) |
55 | 52, 54 | eqtrdi 2787 |
. . . . . . . . . . 11
β’ (β€
β (β D (π₯ β
β β¦ (i Β· π₯))) = (π₯ β β β¦ i)) |
56 | 2, 45, 46, 48, 42, 49, 55 | dvmptsub 25819 |
. . . . . . . . . 10
β’ (β€
β (β D (π₯ β
β β¦ (1 β (i Β· π₯)))) = (π₯ β β β¦ (0 β
i))) |
57 | | df-neg 11454 |
. . . . . . . . . . 11
β’ -i = (0
β i) |
58 | 57 | mpteq2i 5253 |
. . . . . . . . . 10
β’ (π₯ β β β¦ -i) =
(π₯ β β β¦
(0 β i)) |
59 | 56, 58 | eqtr4di 2789 |
. . . . . . . . 9
β’ (β€
β (β D (π₯ β
β β¦ (1 β (i Β· π₯)))) = (π₯ β β β¦ -i)) |
60 | 6 | ssrab3 4080 |
. . . . . . . . . 10
β’ π β
β |
61 | 60 | a1i 11 |
. . . . . . . . 9
β’ (β€
β π β
β) |
62 | | eqid 2731 |
. . . . . . . . . . 11
β’
(TopOpenββfld) =
(TopOpenββfld) |
63 | 62 | cnfldtopon 24619 |
. . . . . . . . . 10
β’
(TopOpenββfld) β
(TopOnββ) |
64 | 63 | toponrestid 22743 |
. . . . . . . . 9
β’
(TopOpenββfld) =
((TopOpenββfld) βΎt
β) |
65 | 5, 6 | atansopn 26778 |
. . . . . . . . . 10
β’ π β
(TopOpenββfld) |
66 | 65 | a1i 11 |
. . . . . . . . 9
β’ (β€
β π β
(TopOpenββfld)) |
67 | 2, 43, 44, 59, 61, 64, 62, 66 | dvmptres 25815 |
. . . . . . . 8
β’ (β€
β (β D (π₯ β
π β¦ (1 β (i
Β· π₯)))) = (π₯ β π β¦ -i)) |
68 | | fssres 6757 |
. . . . . . . . . . . . . 14
β’
((log:(β β {0})βΆran log β§ π· β (β β {0})) β (log
βΎ π·):π·βΆran
log) |
69 | 36, 31, 68 | mp2an 689 |
. . . . . . . . . . . . 13
β’ (log
βΎ π·):π·βΆran log |
70 | 69 | a1i 11 |
. . . . . . . . . . . 12
β’ (β€
β (log βΎ π·):π·βΆran log) |
71 | 70 | feqmptd 6960 |
. . . . . . . . . . 11
β’ (β€
β (log βΎ π·) =
(π¦ β π· β¦ ((log βΎ π·)βπ¦))) |
72 | | fvres 6910 |
. . . . . . . . . . . 12
β’ (π¦ β π· β ((log βΎ π·)βπ¦) = (logβπ¦)) |
73 | 72 | mpteq2ia 5251 |
. . . . . . . . . . 11
β’ (π¦ β π· β¦ ((log βΎ π·)βπ¦)) = (π¦ β π· β¦ (logβπ¦)) |
74 | 71, 73 | eqtr2di 2788 |
. . . . . . . . . 10
β’ (β€
β (π¦ β π· β¦ (logβπ¦)) = (log βΎ π·)) |
75 | 74 | oveq2d 7428 |
. . . . . . . . 9
β’ (β€
β (β D (π¦ β
π· β¦ (logβπ¦))) = (β D (log βΎ
π·))) |
76 | 5 | dvlog 26499 |
. . . . . . . . 9
β’ (β
D (log βΎ π·)) = (π¦ β π· β¦ (1 / π¦)) |
77 | 75, 76 | eqtrdi 2787 |
. . . . . . . 8
β’ (β€
β (β D (π¦ β
π· β¦ (logβπ¦))) = (π¦ β π· β¦ (1 / π¦))) |
78 | | fveq2 6891 |
. . . . . . . 8
β’ (π¦ = (1 β (i Β· π₯)) β (logβπ¦) = (logβ(1 β (i
Β· π₯)))) |
79 | | oveq2 7420 |
. . . . . . . 8
β’ (π¦ = (1 β (i Β· π₯)) β (1 / π¦) = (1 / (1 β (i Β·
π₯)))) |
80 | 2, 2, 28, 30, 39, 40, 67, 77, 78, 79 | dvmptco 25824 |
. . . . . . 7
β’ (β€
β (β D (π₯ β
π β¦ (logβ(1
β (i Β· π₯)))))
= (π₯ β π β¦ ((1 / (1 β (i
Β· π₯))) Β·
-i))) |
81 | | irec 14172 |
. . . . . . . . . 10
β’ (1 / i) =
-i |
82 | 81 | oveq2i 7423 |
. . . . . . . . 9
β’ ((1 / (1
β (i Β· π₯)))
Β· (1 / i)) = ((1 / (1 β (i Β· π₯))) Β· -i) |
83 | 4 | a1i 11 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β i β
β) |
84 | | ine0 11656 |
. . . . . . . . . . . 12
β’ i β
0 |
85 | 84 | a1i 11 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β i β
0) |
86 | 16, 83, 17, 85 | recdiv2d 12015 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((1 / (1
β (i Β· π₯))) /
i) = (1 / ((1 β (i Β· π₯)) Β· i))) |
87 | 16, 17 | reccld 11990 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β (1 / (1
β (i Β· π₯)))
β β) |
88 | 87, 83, 85 | divrecd 12000 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((1 / (1
β (i Β· π₯))) /
i) = ((1 / (1 β (i Β· π₯))) Β· (1 / i))) |
89 | | 1cnd 11216 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β π) β 1 β
β) |
90 | 89, 14, 83 | subdird 11678 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β π) β ((1
β (i Β· π₯))
Β· i) = ((1 Β· i) β ((i Β· π₯) Β· i))) |
91 | 4 | mullidi 11226 |
. . . . . . . . . . . . . . 15
β’ (1
Β· i) = i |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β π) β (1
Β· i) = i) |
93 | 83, 12, 83 | mul32d 11431 |
. . . . . . . . . . . . . . 15
β’
((β€ β§ π₯
β π) β ((i
Β· π₯) Β· i) =
((i Β· i) Β· π₯)) |
94 | | ixi 11850 |
. . . . . . . . . . . . . . . . 17
β’ (i
Β· i) = -1 |
95 | 94 | oveq1i 7422 |
. . . . . . . . . . . . . . . 16
β’ ((i
Β· i) Β· π₯) =
(-1 Β· π₯) |
96 | 12 | mulm1d 11673 |
. . . . . . . . . . . . . . . 16
β’
((β€ β§ π₯
β π) β (-1
Β· π₯) = -π₯) |
97 | 95, 96 | eqtrid 2783 |
. . . . . . . . . . . . . . 15
β’
((β€ β§ π₯
β π) β ((i
Β· i) Β· π₯) =
-π₯) |
98 | 93, 97 | eqtrd 2771 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β π) β ((i
Β· π₯) Β· i) =
-π₯) |
99 | 92, 98 | oveq12d 7430 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β π) β ((1
Β· i) β ((i Β· π₯) Β· i)) = (i β -π₯)) |
100 | | subneg 11516 |
. . . . . . . . . . . . . 14
β’ ((i
β β β§ π₯
β β) β (i β -π₯) = (i + π₯)) |
101 | 4, 12, 100 | sylancr 586 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β π) β (i β
-π₯) = (i + π₯)) |
102 | 90, 99, 101 | 3eqtrd 2775 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β ((1
β (i Β· π₯))
Β· i) = (i + π₯)) |
103 | 83, 12, 102 | comraddd 11435 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β ((1
β (i Β· π₯))
Β· i) = (π₯ +
i)) |
104 | 103 | oveq2d 7428 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β (1 / ((1
β (i Β· π₯))
Β· i)) = (1 / (π₯ +
i))) |
105 | 86, 88, 104 | 3eqtr3d 2779 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β ((1 / (1
β (i Β· π₯)))
Β· (1 / i)) = (1 / (π₯
+ i))) |
106 | 82, 105 | eqtr3id 2785 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β ((1 / (1
β (i Β· π₯)))
Β· -i) = (1 / (π₯ +
i))) |
107 | 106 | mpteq2dva 5248 |
. . . . . . 7
β’ (β€
β (π₯ β π β¦ ((1 / (1 β (i
Β· π₯))) Β· -i))
= (π₯ β π β¦ (1 / (π₯ + i)))) |
108 | 80, 107 | eqtrd 2771 |
. . . . . 6
β’ (β€
β (β D (π₯ β
π β¦ (logβ(1
β (i Β· π₯)))))
= (π₯ β π β¦ (1 / (π₯ + i)))) |
109 | | ovexd 7447 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (1 /
(π₯ β i)) β
V) |
110 | 26 | simp3bi 1146 |
. . . . . . . . 9
β’ (π₯ β π β (1 + (i Β· π₯)) β π·) |
111 | 110 | adantl 481 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β (1 + (i
Β· π₯)) β π·) |
112 | 3, 42, 19 | sylancr 586 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β) β (1 + (i Β· π₯)) β β) |
113 | 2, 45, 46, 48, 42, 49, 55 | dvmptadd 25812 |
. . . . . . . . . 10
β’ (β€
β (β D (π₯ β
β β¦ (1 + (i Β· π₯)))) = (π₯ β β β¦ (0 +
i))) |
114 | 4 | addlidi 11409 |
. . . . . . . . . . 11
β’ (0 + i) =
i |
115 | 114 | mpteq2i 5253 |
. . . . . . . . . 10
β’ (π₯ β β β¦ (0 + i))
= (π₯ β β β¦
i) |
116 | 113, 115 | eqtrdi 2787 |
. . . . . . . . 9
β’ (β€
β (β D (π₯ β
β β¦ (1 + (i Β· π₯)))) = (π₯ β β β¦ i)) |
117 | 2, 112, 49, 116, 61, 64, 62, 66 | dvmptres 25815 |
. . . . . . . 8
β’ (β€
β (β D (π₯ β
π β¦ (1 + (i Β·
π₯)))) = (π₯ β π β¦ i)) |
118 | | fveq2 6891 |
. . . . . . . 8
β’ (π¦ = (1 + (i Β· π₯)) β (logβπ¦) = (logβ(1 + (i Β·
π₯)))) |
119 | | oveq2 7420 |
. . . . . . . 8
β’ (π¦ = (1 + (i Β· π₯)) β (1 / π¦) = (1 / (1 + (i Β· π₯)))) |
120 | 2, 2, 111, 83, 39, 40, 117, 77, 118, 119 | dvmptco 25824 |
. . . . . . 7
β’ (β€
β (β D (π₯ β
π β¦ (logβ(1 +
(i Β· π₯))))) = (π₯ β π β¦ ((1 / (1 + (i Β· π₯))) Β·
i))) |
121 | 89, 20, 83, 21, 85 | divdiv2d 12029 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (1 / ((1 +
(i Β· π₯)) / i)) = ((1
Β· i) / (1 + (i Β· π₯)))) |
122 | 89, 14, 83, 85 | divdird 12035 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β ((1 + (i
Β· π₯)) / i) = ((1 /
i) + ((i Β· π₯) /
i))) |
123 | 81 | a1i 11 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β (1 / i) =
-i) |
124 | 12, 83, 85 | divcan3d 12002 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β ((i
Β· π₯) / i) = π₯) |
125 | 123, 124 | oveq12d 7430 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β ((1 / i) +
((i Β· π₯) / i)) = (-i
+ π₯)) |
126 | | negicn 11468 |
. . . . . . . . . . . . 13
β’ -i β
β |
127 | | addcom 11407 |
. . . . . . . . . . . . 13
β’ ((-i
β β β§ π₯
β β) β (-i + π₯) = (π₯ + -i)) |
128 | 126, 12, 127 | sylancr 586 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β (-i +
π₯) = (π₯ + -i)) |
129 | | negsub 11515 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ i β
β) β (π₯ + -i) =
(π₯ β
i)) |
130 | 12, 4, 129 | sylancl 585 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β (π₯ + -i) = (π₯ β i)) |
131 | 128, 130 | eqtrd 2771 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β (-i +
π₯) = (π₯ β i)) |
132 | 122, 125,
131 | 3eqtrd 2775 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((1 + (i
Β· π₯)) / i) = (π₯ β i)) |
133 | 132 | oveq2d 7428 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (1 / ((1 +
(i Β· π₯)) / i)) = (1
/ (π₯ β
i))) |
134 | 89, 83, 20, 21 | div23d 12034 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β ((1
Β· i) / (1 + (i Β· π₯))) = ((1 / (1 + (i Β· π₯))) Β·
i)) |
135 | 121, 133,
134 | 3eqtr3rd 2780 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β ((1 / (1 +
(i Β· π₯))) Β·
i) = (1 / (π₯ β
i))) |
136 | 135 | mpteq2dva 5248 |
. . . . . . 7
β’ (β€
β (π₯ β π β¦ ((1 / (1 + (i Β·
π₯))) Β· i)) = (π₯ β π β¦ (1 / (π₯ β i)))) |
137 | 120, 136 | eqtrd 2771 |
. . . . . 6
β’ (β€
β (β D (π₯ β
π β¦ (logβ(1 +
(i Β· π₯))))) = (π₯ β π β¦ (1 / (π₯ β i)))) |
138 | 2, 18, 25, 108, 22, 109, 137 | dvmptsub 25819 |
. . . . 5
β’ (β€
β (β D (π₯ β
π β¦ ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯)))))) = (π₯ β π β¦ ((1 / (π₯ + i)) β (1 / (π₯ β i))))) |
139 | | subcl 11466 |
. . . . . . . . 9
β’ ((π₯ β β β§ i β
β) β (π₯ β
i) β β) |
140 | 12, 4, 139 | sylancl 585 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β (π₯ β i) β
β) |
141 | | addcl 11198 |
. . . . . . . . 9
β’ ((π₯ β β β§ i β
β) β (π₯ + i)
β β) |
142 | 12, 4, 141 | sylancl 585 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β (π₯ + i) β
β) |
143 | 12 | sqcld 14116 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (π₯β2) β
β) |
144 | | addcl 11198 |
. . . . . . . . 9
β’ ((1
β β β§ (π₯β2) β β) β (1 + (π₯β2)) β
β) |
145 | 3, 143, 144 | sylancr 586 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β (1 +
(π₯β2)) β
β) |
146 | | atandm4 26725 |
. . . . . . . . . 10
β’ (π₯ β dom arctan β (π₯ β β β§ (1 +
(π₯β2)) β
0)) |
147 | 146 | simprbi 496 |
. . . . . . . . 9
β’ (π₯ β dom arctan β (1 +
(π₯β2)) β
0) |
148 | 9, 147 | syl 17 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β (1 +
(π₯β2)) β
0) |
149 | 140, 142,
145, 148 | divsubdird 12036 |
. . . . . . 7
β’
((β€ β§ π₯
β π) β (((π₯ β i) β (π₯ + i)) / (1 + (π₯β2))) = (((π₯ β i) / (1 + (π₯β2))) β ((π₯ + i) / (1 + (π₯β2))))) |
150 | 130 | oveq1d 7427 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((π₯ + -i) β (π₯ + i)) = ((π₯ β i) β (π₯ + i))) |
151 | 126 | a1i 11 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β -i β
β) |
152 | 12, 151, 83 | pnpcand 11615 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((π₯ + -i) β (π₯ + i)) = (-i β
i)) |
153 | 150, 152 | eqtr3d 2773 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β ((π₯ β i) β (π₯ + i)) = (-i β
i)) |
154 | | 2cn 12294 |
. . . . . . . . . . . 12
β’ 2 β
β |
155 | 154, 4, 84 | divreci 11966 |
. . . . . . . . . . 11
β’ (2 / i) =
(2 Β· (1 / i)) |
156 | 81 | oveq2i 7423 |
. . . . . . . . . . 11
β’ (2
Β· (1 / i)) = (2 Β· -i) |
157 | 155, 156 | eqtri 2759 |
. . . . . . . . . 10
β’ (2 / i) =
(2 Β· -i) |
158 | 126 | 2timesi 12357 |
. . . . . . . . . 10
β’ (2
Β· -i) = (-i + -i) |
159 | 126, 4 | negsubi 11545 |
. . . . . . . . . 10
β’ (-i + -i)
= (-i β i) |
160 | 157, 158,
159 | 3eqtri 2763 |
. . . . . . . . 9
β’ (2 / i) =
(-i β i) |
161 | 153, 160 | eqtr4di 2789 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β ((π₯ β i) β (π₯ + i)) = (2 /
i)) |
162 | 161 | oveq1d 7427 |
. . . . . . 7
β’
((β€ β§ π₯
β π) β (((π₯ β i) β (π₯ + i)) / (1 + (π₯β2))) = ((2 / i) / (1 +
(π₯β2)))) |
163 | 140 | mulridd 11238 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((π₯ β i) Β· 1) = (π₯ β i)) |
164 | 140, 142 | mulcomd 11242 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β ((π₯ β i) Β· (π₯ + i)) = ((π₯ + i) Β· (π₯ β i))) |
165 | | i2 14173 |
. . . . . . . . . . . . . 14
β’
(iβ2) = -1 |
166 | 165 | oveq2i 7423 |
. . . . . . . . . . . . 13
β’ ((π₯β2) β (iβ2)) =
((π₯β2) β
-1) |
167 | | subneg 11516 |
. . . . . . . . . . . . . 14
β’ (((π₯β2) β β β§ 1
β β) β ((π₯β2) β -1) = ((π₯β2) + 1)) |
168 | 143, 3, 167 | sylancl 585 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β π) β ((π₯β2) β -1) = ((π₯β2) + 1)) |
169 | 166, 168 | eqtrid 2783 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β ((π₯β2) β (iβ2)) =
((π₯β2) +
1)) |
170 | | subsq 14181 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ i β
β) β ((π₯β2)
β (iβ2)) = ((π₯ +
i) Β· (π₯ β
i))) |
171 | 12, 4, 170 | sylancl 585 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β ((π₯β2) β (iβ2)) =
((π₯ + i) Β· (π₯ β i))) |
172 | | addcom 11407 |
. . . . . . . . . . . . 13
β’ (((π₯β2) β β β§ 1
β β) β ((π₯β2) + 1) = (1 + (π₯β2))) |
173 | 143, 3, 172 | sylancl 585 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β ((π₯β2) + 1) = (1 + (π₯β2))) |
174 | 169, 171,
173 | 3eqtr3d 2779 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β ((π₯ + i) Β· (π₯ β i)) = (1 + (π₯β2))) |
175 | 164, 174 | eqtrd 2771 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((π₯ β i) Β· (π₯ + i)) = (1 + (π₯β2))) |
176 | 163, 175 | oveq12d 7430 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (((π₯ β i) Β· 1) /
((π₯ β i) Β·
(π₯ + i))) = ((π₯ β i) / (1 + (π₯β2)))) |
177 | | subneg 11516 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ i β
β) β (π₯ β
-i) = (π₯ +
i)) |
178 | 12, 4, 177 | sylancl 585 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β (π₯ β -i) = (π₯ + i)) |
179 | | atandm 26722 |
. . . . . . . . . . . . . 14
β’ (π₯ β dom arctan β (π₯ β β β§ π₯ β -i β§ π₯ β i)) |
180 | 9, 179 | sylib 217 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β π) β (π₯ β β β§ π₯ β -i β§ π₯ β i)) |
181 | 180 | simp2d 1142 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β π₯ β -i) |
182 | | subeq0 11493 |
. . . . . . . . . . . . . 14
β’ ((π₯ β β β§ -i β
β) β ((π₯ β
-i) = 0 β π₯ =
-i)) |
183 | 182 | necon3bid 2984 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ -i β
β) β ((π₯ β
-i) β 0 β π₯ β
-i)) |
184 | 12, 126, 183 | sylancl 585 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β π) β ((π₯ β -i) β 0 β π₯ β -i)) |
185 | 181, 184 | mpbird 257 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β (π₯ β -i) β
0) |
186 | 178, 185 | eqnetrrd 3008 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β (π₯ + i) β 0) |
187 | 180 | simp3d 1143 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β π₯ β i) |
188 | | subeq0 11493 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ i β
β) β ((π₯ β
i) = 0 β π₯ =
i)) |
189 | 188 | necon3bid 2984 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ i β
β) β ((π₯ β
i) β 0 β π₯ β
i)) |
190 | 12, 4, 189 | sylancl 585 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β π) β ((π₯ β i) β 0 β π₯ β i)) |
191 | 187, 190 | mpbird 257 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β (π₯ β i) β
0) |
192 | 89, 142, 140, 186, 191 | divcan5d 12023 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (((π₯ β i) Β· 1) /
((π₯ β i) Β·
(π₯ + i))) = (1 / (π₯ + i))) |
193 | 176, 192 | eqtr3d 2773 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β ((π₯ β i) / (1 + (π₯β2))) = (1 / (π₯ + i))) |
194 | 142 | mulridd 11238 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β π) β ((π₯ + i) Β· 1) = (π₯ + i)) |
195 | 194, 174 | oveq12d 7430 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (((π₯ + i) Β· 1) / ((π₯ + i) Β· (π₯ β i))) = ((π₯ + i) / (1 + (π₯β2)))) |
196 | 89, 140, 142, 191, 186 | divcan5d 12023 |
. . . . . . . . 9
β’
((β€ β§ π₯
β π) β (((π₯ + i) Β· 1) / ((π₯ + i) Β· (π₯ β i))) = (1 / (π₯ β i))) |
197 | 195, 196 | eqtr3d 2773 |
. . . . . . . 8
β’
((β€ β§ π₯
β π) β ((π₯ + i) / (1 + (π₯β2))) = (1 / (π₯ β i))) |
198 | 193, 197 | oveq12d 7430 |
. . . . . . 7
β’
((β€ β§ π₯
β π) β (((π₯ β i) / (1 + (π₯β2))) β ((π₯ + i) / (1 + (π₯β2)))) = ((1 / (π₯ + i)) β (1 / (π₯ β i)))) |
199 | 149, 162,
198 | 3eqtr3rd 2780 |
. . . . . 6
β’
((β€ β§ π₯
β π) β ((1 /
(π₯ + i)) β (1 /
(π₯ β i))) = ((2 / i)
/ (1 + (π₯β2)))) |
200 | 199 | mpteq2dva 5248 |
. . . . 5
β’ (β€
β (π₯ β π β¦ ((1 / (π₯ + i)) β (1 / (π₯ β i)))) = (π₯ β π β¦ ((2 / i) / (1 + (π₯β2))))) |
201 | 138, 200 | eqtrd 2771 |
. . . 4
β’ (β€
β (β D (π₯ β
π β¦ ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯)))))) = (π₯ β π β¦ ((2 / i) / (1 + (π₯β2))))) |
202 | | halfcl 12444 |
. . . . 5
β’ (i β
β β (i / 2) β β) |
203 | 4, 202 | mp1i 13 |
. . . 4
β’ (β€
β (i / 2) β β) |
204 | 2, 23, 24, 201, 203 | dvmptcmul 25816 |
. . 3
β’ (β€
β (β D (π₯ β
π β¦ ((i / 2) Β·
((logβ(1 β (i Β· π₯))) β (logβ(1 + (i Β· π₯))))))) = (π₯ β π β¦ ((i / 2) Β· ((2 / i) / (1 +
(π₯β2)))))) |
205 | | df-atan 26713 |
. . . . . . 7
β’ arctan =
(π₯ β (β β
{-i, i}) β¦ ((i / 2) Β· ((logβ(1 β (i Β· π₯))) β (logβ(1 + (i
Β· π₯)))))) |
206 | 205 | reseq1i 5977 |
. . . . . 6
β’ (arctan
βΎ π) = ((π₯ β (β β {-i,
i}) β¦ ((i / 2) Β· ((logβ(1 β (i Β· π₯))) β (logβ(1 + (i
Β· π₯)))))) βΎ
π) |
207 | | atanf 26726 |
. . . . . . . . 9
β’
arctan:(β β {-i, i})βΆβ |
208 | 207 | fdmi 6729 |
. . . . . . . 8
β’ dom
arctan = (β β {-i, i}) |
209 | 7, 208 | sseqtri 4018 |
. . . . . . 7
β’ π β (β β {-i,
i}) |
210 | | resmpt 6037 |
. . . . . . 7
β’ (π β (β β {-i,
i}) β ((π₯ β
(β β {-i, i}) β¦ ((i / 2) Β· ((logβ(1 β (i
Β· π₯))) β
(logβ(1 + (i Β· π₯)))))) βΎ π) = (π₯ β π β¦ ((i / 2) Β· ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯))))))) |
211 | 209, 210 | ax-mp 5 |
. . . . . 6
β’ ((π₯ β (β β {-i,
i}) β¦ ((i / 2) Β· ((logβ(1 β (i Β· π₯))) β (logβ(1 + (i
Β· π₯)))))) βΎ
π) = (π₯ β π β¦ ((i / 2) Β· ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯)))))) |
212 | 206, 211 | eqtri 2759 |
. . . . 5
β’ (arctan
βΎ π) = (π₯ β π β¦ ((i / 2) Β· ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯)))))) |
213 | 212 | a1i 11 |
. . . 4
β’ (β€
β (arctan βΎ π) =
(π₯ β π β¦ ((i / 2) Β· ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯))))))) |
214 | 213 | oveq2d 7428 |
. . 3
β’ (β€
β (β D (arctan βΎ π)) = (β D (π₯ β π β¦ ((i / 2) Β· ((logβ(1
β (i Β· π₯)))
β (logβ(1 + (i Β· π₯)))))))) |
215 | | 2ne0 12323 |
. . . . . . 7
β’ 2 β
0 |
216 | | divcan6 11928 |
. . . . . . 7
β’ (((i
β β β§ i β 0) β§ (2 β β β§ 2 β 0)) β
((i / 2) Β· (2 / i)) = 1) |
217 | 4, 84, 154, 215, 216 | mp4an 690 |
. . . . . 6
β’ ((i / 2)
Β· (2 / i)) = 1 |
218 | 217 | oveq1i 7422 |
. . . . 5
β’ (((i / 2)
Β· (2 / i)) / (1 + (π₯β2))) = (1 / (1 + (π₯β2))) |
219 | 4, 202 | mp1i 13 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (i / 2)
β β) |
220 | 154, 4, 84 | divcli 11963 |
. . . . . . 7
β’ (2 / i)
β β |
221 | 220 | a1i 11 |
. . . . . 6
β’
((β€ β§ π₯
β π) β (2 / i)
β β) |
222 | 219, 221,
145, 148 | divassd 12032 |
. . . . 5
β’
((β€ β§ π₯
β π) β (((i / 2)
Β· (2 / i)) / (1 + (π₯β2))) = ((i / 2) Β· ((2 / i) / (1
+ (π₯β2))))) |
223 | 218, 222 | eqtr3id 2785 |
. . . 4
β’
((β€ β§ π₯
β π) β (1 / (1 +
(π₯β2))) = ((i / 2)
Β· ((2 / i) / (1 + (π₯β2))))) |
224 | 223 | mpteq2dva 5248 |
. . 3
β’ (β€
β (π₯ β π β¦ (1 / (1 + (π₯β2)))) = (π₯ β π β¦ ((i / 2) Β· ((2 / i) / (1 +
(π₯β2)))))) |
225 | 204, 214,
224 | 3eqtr4d 2781 |
. 2
β’ (β€
β (β D (arctan βΎ π)) = (π₯ β π β¦ (1 / (1 + (π₯β2))))) |
226 | 225 | mptru 1547 |
1
β’ (β
D (arctan βΎ π)) =
(π₯ β π β¦ (1 / (1 + (π₯β2)))) |