MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvatan Structured version   Visualization version   GIF version

Theorem dvatan 26845
Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
dvatan (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem dvatan
StepHypRef Expression
1 cnelprrecn 11161 . . . . 5 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
4 ax-icn 11127 . . . . . . . 8 i ∈ ℂ
5 atansopn.d . . . . . . . . . . . 12 𝐷 = (ℂ ∖ (-∞(,]0))
6 atansopn.s . . . . . . . . . . . 12 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
75, 6atansssdm 26843 . . . . . . . . . . 11 𝑆 ⊆ dom arctan
8 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → 𝑥𝑆)
97, 8sselid 3944 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → 𝑥 ∈ dom arctan)
10 atandm2 26787 . . . . . . . . . 10 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ≠ 0 ∧ (1 + (i · 𝑥)) ≠ 0))
119, 10sylib 218 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ≠ 0 ∧ (1 + (i · 𝑥)) ≠ 0))
1211simp1d 1142 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
13 mulcl 11152 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
144, 12, 13sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (i · 𝑥) ∈ ℂ)
15 subcl 11420 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ)
163, 14, 15sylancr 587 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ∈ ℂ)
1711simp2d 1143 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ≠ 0)
1816, 17logcld 26479 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (log‘(1 − (i · 𝑥))) ∈ ℂ)
19 addcl 11150 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ)
203, 14, 19sylancr 587 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ∈ ℂ)
2111simp3d 1144 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ≠ 0)
2220, 21logcld 26479 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (log‘(1 + (i · 𝑥))) ∈ ℂ)
2318, 22subcld 11533 . . . 4 ((⊤ ∧ 𝑥𝑆) → ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))) ∈ ℂ)
24 ovexd 7422 . . . 4 ((⊤ ∧ 𝑥𝑆) → ((2 / i) / (1 + (𝑥↑2))) ∈ V)
25 ovexd 7422 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 / (𝑥 + i)) ∈ V)
265, 6atans2 26841 . . . . . . . . . 10 (𝑥𝑆 ↔ (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ∈ 𝐷 ∧ (1 + (i · 𝑥)) ∈ 𝐷))
2726simp2bi 1146 . . . . . . . . 9 (𝑥𝑆 → (1 − (i · 𝑥)) ∈ 𝐷)
2827adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ∈ 𝐷)
29 negex 11419 . . . . . . . . 9 -i ∈ V
3029a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → -i ∈ V)
315logdmss 26551 . . . . . . . . . 10 𝐷 ⊆ (ℂ ∖ {0})
32 simpr 484 . . . . . . . . . 10 ((⊤ ∧ 𝑦𝐷) → 𝑦𝐷)
3331, 32sselid 3944 . . . . . . . . 9 ((⊤ ∧ 𝑦𝐷) → 𝑦 ∈ (ℂ ∖ {0}))
34 logf1o 26473 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
35 f1of 6800 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
3634, 35ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
3736ffvelcdmi 7055 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → (log‘𝑦) ∈ ran log)
38 logrncn 26471 . . . . . . . . 9 ((log‘𝑦) ∈ ran log → (log‘𝑦) ∈ ℂ)
3933, 37, 383syl 18 . . . . . . . 8 ((⊤ ∧ 𝑦𝐷) → (log‘𝑦) ∈ ℂ)
40 ovexd 7422 . . . . . . . 8 ((⊤ ∧ 𝑦𝐷) → (1 / 𝑦) ∈ V)
414a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
4241, 13sylan 580 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
433, 42, 15sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ)
4429a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ V)
45 1cnd 11169 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
46 0cnd 11167 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℂ)
47 1cnd 11169 . . . . . . . . . . . 12 (⊤ → 1 ∈ ℂ)
482, 47dvmptc 25862 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
494a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
512dvmptid 25861 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
522, 50, 45, 51, 41dvmptcmul 25868 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
534mulridi 11178 . . . . . . . . . . . . 13 (i · 1) = i
5453mpteq2i 5203 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
5552, 54eqtrdi 2780 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
562, 45, 46, 48, 42, 49, 55dvmptsub 25871 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 − i)))
57 df-neg 11408 . . . . . . . . . . 11 -i = (0 − i)
5857mpteq2i 5203 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -i) = (𝑥 ∈ ℂ ↦ (0 − i))
5956, 58eqtr4di 2782 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ -i))
606ssrab3 4045 . . . . . . . . . 10 𝑆 ⊆ ℂ
6160a1i 11 . . . . . . . . 9 (⊤ → 𝑆 ⊆ ℂ)
62 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6362cnfldtopon 24670 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
6463toponrestid 22808 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
655, 6atansopn 26842 . . . . . . . . . 10 𝑆 ∈ (TopOpen‘ℂfld)
6665a1i 11 . . . . . . . . 9 (⊤ → 𝑆 ∈ (TopOpen‘ℂfld))
672, 43, 44, 59, 61, 64, 62, 66dvmptres 25867 . . . . . . . 8 (⊤ → (ℂ D (𝑥𝑆 ↦ (1 − (i · 𝑥)))) = (𝑥𝑆 ↦ -i))
68 fssres 6726 . . . . . . . . . . . . . 14 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
6936, 31, 68mp2an 692 . . . . . . . . . . . . 13 (log ↾ 𝐷):𝐷⟶ran log
7069a1i 11 . . . . . . . . . . . 12 (⊤ → (log ↾ 𝐷):𝐷⟶ran log)
7170feqmptd 6929 . . . . . . . . . . 11 (⊤ → (log ↾ 𝐷) = (𝑦𝐷 ↦ ((log ↾ 𝐷)‘𝑦)))
72 fvres 6877 . . . . . . . . . . . 12 (𝑦𝐷 → ((log ↾ 𝐷)‘𝑦) = (log‘𝑦))
7372mpteq2ia 5202 . . . . . . . . . . 11 (𝑦𝐷 ↦ ((log ↾ 𝐷)‘𝑦)) = (𝑦𝐷 ↦ (log‘𝑦))
7471, 73eqtr2di 2781 . . . . . . . . . 10 (⊤ → (𝑦𝐷 ↦ (log‘𝑦)) = (log ↾ 𝐷))
7574oveq2d 7403 . . . . . . . . 9 (⊤ → (ℂ D (𝑦𝐷 ↦ (log‘𝑦))) = (ℂ D (log ↾ 𝐷)))
765dvlog 26560 . . . . . . . . 9 (ℂ D (log ↾ 𝐷)) = (𝑦𝐷 ↦ (1 / 𝑦))
7775, 76eqtrdi 2780 . . . . . . . 8 (⊤ → (ℂ D (𝑦𝐷 ↦ (log‘𝑦))) = (𝑦𝐷 ↦ (1 / 𝑦)))
78 fveq2 6858 . . . . . . . 8 (𝑦 = (1 − (i · 𝑥)) → (log‘𝑦) = (log‘(1 − (i · 𝑥))))
79 oveq2 7395 . . . . . . . 8 (𝑦 = (1 − (i · 𝑥)) → (1 / 𝑦) = (1 / (1 − (i · 𝑥))))
802, 2, 28, 30, 39, 40, 67, 77, 78, 79dvmptco 25876 . . . . . . 7 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 − (i · 𝑥))))) = (𝑥𝑆 ↦ ((1 / (1 − (i · 𝑥))) · -i)))
81 irec 14166 . . . . . . . . . 10 (1 / i) = -i
8281oveq2i 7398 . . . . . . . . 9 ((1 / (1 − (i · 𝑥))) · (1 / i)) = ((1 / (1 − (i · 𝑥))) · -i)
834a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → i ∈ ℂ)
84 ine0 11613 . . . . . . . . . . . 12 i ≠ 0
8584a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → i ≠ 0)
8616, 83, 17, 85recdiv2d 11976 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) / i) = (1 / ((1 − (i · 𝑥)) · i)))
8716, 17reccld 11951 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (1 / (1 − (i · 𝑥))) ∈ ℂ)
8887, 83, 85divrecd 11961 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) / i) = ((1 / (1 − (i · 𝑥))) · (1 / i)))
89 1cnd 11169 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → 1 ∈ ℂ)
9089, 14, 83subdird 11635 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = ((1 · i) − ((i · 𝑥) · i)))
914mullidi 11179 . . . . . . . . . . . . . . 15 (1 · i) = i
9291a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → (1 · i) = i)
9383, 12, 83mul32d 11384 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) · i) = ((i · i) · 𝑥))
94 ixi 11807 . . . . . . . . . . . . . . . . 17 (i · i) = -1
9594oveq1i 7397 . . . . . . . . . . . . . . . 16 ((i · i) · 𝑥) = (-1 · 𝑥)
9612mulm1d 11630 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥𝑆) → (-1 · 𝑥) = -𝑥)
9795, 96eqtrid 2776 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥𝑆) → ((i · i) · 𝑥) = -𝑥)
9893, 97eqtrd 2764 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) · i) = -𝑥)
9992, 98oveq12d 7405 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((1 · i) − ((i · 𝑥) · i)) = (i − -𝑥))
100 subneg 11471 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i − -𝑥) = (i + 𝑥))
1014, 12, 100sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → (i − -𝑥) = (i + 𝑥))
10290, 99, 1013eqtrd 2768 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = (i + 𝑥))
10383, 12, 102comraddd 11388 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = (𝑥 + i))
104103oveq2d 7403 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 − (i · 𝑥)) · i)) = (1 / (𝑥 + i)))
10586, 88, 1043eqtr3d 2772 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) · (1 / i)) = (1 / (𝑥 + i)))
10682, 105eqtr3id 2778 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) · -i) = (1 / (𝑥 + i)))
107106mpteq2dva 5200 . . . . . . 7 (⊤ → (𝑥𝑆 ↦ ((1 / (1 − (i · 𝑥))) · -i)) = (𝑥𝑆 ↦ (1 / (𝑥 + i))))
10880, 107eqtrd 2764 . . . . . 6 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 − (i · 𝑥))))) = (𝑥𝑆 ↦ (1 / (𝑥 + i))))
109 ovexd 7422 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 / (𝑥 − i)) ∈ V)
11026simp3bi 1147 . . . . . . . . 9 (𝑥𝑆 → (1 + (i · 𝑥)) ∈ 𝐷)
111110adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ∈ 𝐷)
1123, 42, 19sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ)
1132, 45, 46, 48, 42, 49, 55dvmptadd 25864 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 + i)))
1144addlidi 11362 . . . . . . . . . . 11 (0 + i) = i
115114mpteq2i 5203 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (0 + i)) = (𝑥 ∈ ℂ ↦ i)
116113, 115eqtrdi 2780 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ i))
1172, 112, 49, 116, 61, 64, 62, 66dvmptres 25867 . . . . . . . 8 (⊤ → (ℂ D (𝑥𝑆 ↦ (1 + (i · 𝑥)))) = (𝑥𝑆 ↦ i))
118 fveq2 6858 . . . . . . . 8 (𝑦 = (1 + (i · 𝑥)) → (log‘𝑦) = (log‘(1 + (i · 𝑥))))
119 oveq2 7395 . . . . . . . 8 (𝑦 = (1 + (i · 𝑥)) → (1 / 𝑦) = (1 / (1 + (i · 𝑥))))
1202, 2, 111, 83, 39, 40, 117, 77, 118, 119dvmptco 25876 . . . . . . 7 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 + (i · 𝑥))))) = (𝑥𝑆 ↦ ((1 / (1 + (i · 𝑥))) · i)))
12189, 20, 83, 21, 85divdiv2d 11990 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 + (i · 𝑥)) / i)) = ((1 · i) / (1 + (i · 𝑥))))
12289, 14, 83, 85divdird 11996 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 + (i · 𝑥)) / i) = ((1 / i) + ((i · 𝑥) / i)))
12381a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (1 / i) = -i)
12412, 83, 85divcan3d 11963 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) / i) = 𝑥)
125123, 124oveq12d 7405 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 / i) + ((i · 𝑥) / i)) = (-i + 𝑥))
126 negicn 11422 . . . . . . . . . . . . 13 -i ∈ ℂ
127 addcom 11360 . . . . . . . . . . . . 13 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i + 𝑥) = (𝑥 + -i))
128126, 12, 127sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (-i + 𝑥) = (𝑥 + -i))
129 negsub 11470 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 + -i) = (𝑥 − i))
13012, 4, 129sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (𝑥 + -i) = (𝑥 − i))
131128, 130eqtrd 2764 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (-i + 𝑥) = (𝑥 − i))
132122, 125, 1313eqtrd 2768 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 + (i · 𝑥)) / i) = (𝑥 − i))
133132oveq2d 7403 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 + (i · 𝑥)) / i)) = (1 / (𝑥 − i)))
13489, 83, 20, 21div23d 11995 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((1 · i) / (1 + (i · 𝑥))) = ((1 / (1 + (i · 𝑥))) · i))
135121, 133, 1343eqtr3rd 2773 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 + (i · 𝑥))) · i) = (1 / (𝑥 − i)))
136135mpteq2dva 5200 . . . . . . 7 (⊤ → (𝑥𝑆 ↦ ((1 / (1 + (i · 𝑥))) · i)) = (𝑥𝑆 ↦ (1 / (𝑥 − i))))
137120, 136eqtrd 2764 . . . . . 6 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 + (i · 𝑥))))) = (𝑥𝑆 ↦ (1 / (𝑥 − i))))
1382, 18, 25, 108, 22, 109, 137dvmptsub 25871 . . . . 5 (⊤ → (ℂ D (𝑥𝑆 ↦ ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) = (𝑥𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))))
139 subcl 11420 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 − i) ∈ ℂ)
14012, 4, 139sylancl 586 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (𝑥 − i) ∈ ℂ)
141 addcl 11150 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 + i) ∈ ℂ)
14212, 4, 141sylancl 586 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (𝑥 + i) ∈ ℂ)
14312sqcld 14109 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (𝑥↑2) ∈ ℂ)
144 addcl 11150 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 + (𝑥↑2)) ∈ ℂ)
1453, 143, 144sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (𝑥↑2)) ∈ ℂ)
146 atandm4 26789 . . . . . . . . . 10 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 + (𝑥↑2)) ≠ 0))
147146simprbi 496 . . . . . . . . 9 (𝑥 ∈ dom arctan → (1 + (𝑥↑2)) ≠ 0)
1489, 147syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (𝑥↑2)) ≠ 0)
149140, 142, 145, 148divsubdird 11997 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))))
150130oveq1d 7402 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + -i) − (𝑥 + i)) = ((𝑥 − i) − (𝑥 + i)))
151126a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → -i ∈ ℂ)
15212, 151, 83pnpcand 11570 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + -i) − (𝑥 + i)) = (-i − i))
153150, 152eqtr3d 2766 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) − (𝑥 + i)) = (-i − i))
154 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
155154, 4, 84divreci 11927 . . . . . . . . . . 11 (2 / i) = (2 · (1 / i))
15681oveq2i 7398 . . . . . . . . . . 11 (2 · (1 / i)) = (2 · -i)
157155, 156eqtri 2752 . . . . . . . . . 10 (2 / i) = (2 · -i)
1581262timesi 12319 . . . . . . . . . 10 (2 · -i) = (-i + -i)
159126, 4negsubi 11500 . . . . . . . . . 10 (-i + -i) = (-i − i)
160157, 158, 1593eqtri 2756 . . . . . . . . 9 (2 / i) = (-i − i)
161153, 160eqtr4di 2782 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) − (𝑥 + i)) = (2 / i))
162161oveq1d 7402 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = ((2 / i) / (1 + (𝑥↑2))))
163140mulridd 11191 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · 1) = (𝑥 − i))
164140, 142mulcomd 11195 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · (𝑥 + i)) = ((𝑥 + i) · (𝑥 − i)))
165 i2 14167 . . . . . . . . . . . . . 14 (i↑2) = -1
166165oveq2i 7398 . . . . . . . . . . . . 13 ((𝑥↑2) − (i↑2)) = ((𝑥↑2) − -1)
167 subneg 11471 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1))
168143, 3, 167sylancl 586 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1))
169166, 168eqtrid 2776 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − (i↑2)) = ((𝑥↑2) + 1))
170 subsq 14175 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥↑2) − (i↑2)) = ((𝑥 + i) · (𝑥 − i)))
17112, 4, 170sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − (i↑2)) = ((𝑥 + i) · (𝑥 − i)))
172 addcom 11360 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) + 1) = (1 + (𝑥↑2)))
173143, 3, 172sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) + 1) = (1 + (𝑥↑2)))
174169, 171, 1733eqtr3d 2772 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) · (𝑥 − i)) = (1 + (𝑥↑2)))
175164, 174eqtrd 2764 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · (𝑥 + i)) = (1 + (𝑥↑2)))
176163, 175oveq12d 7405 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) · 1) / ((𝑥 − i) · (𝑥 + i))) = ((𝑥 − i) / (1 + (𝑥↑2))))
177 subneg 11471 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 − -i) = (𝑥 + i))
17812, 4, 177sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (𝑥 − -i) = (𝑥 + i))
179 atandm 26786 . . . . . . . . . . . . . 14 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i))
1809, 179sylib 218 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i))
181180simp2d 1143 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → 𝑥 ≠ -i)
182 subeq0 11448 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ -i ∈ ℂ) → ((𝑥 − -i) = 0 ↔ 𝑥 = -i))
183182necon3bid 2969 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ -i ∈ ℂ) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i))
18412, 126, 183sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i))
185181, 184mpbird 257 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (𝑥 − -i) ≠ 0)
186178, 185eqnetrrd 2993 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (𝑥 + i) ≠ 0)
187180simp3d 1144 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → 𝑥 ≠ i)
188 subeq0 11448 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥 − i) = 0 ↔ 𝑥 = i))
189188necon3bid 2969 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i))
19012, 4, 189sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i))
191187, 190mpbird 257 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (𝑥 − i) ≠ 0)
19289, 142, 140, 186, 191divcan5d 11984 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) · 1) / ((𝑥 − i) · (𝑥 + i))) = (1 / (𝑥 + i)))
193176, 192eqtr3d 2766 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) / (1 + (𝑥↑2))) = (1 / (𝑥 + i)))
194142mulridd 11191 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) · 1) = (𝑥 + i))
195194, 174oveq12d 7405 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = ((𝑥 + i) / (1 + (𝑥↑2))))
19689, 140, 142, 191, 186divcan5d 11984 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = (1 / (𝑥 − i)))
197195, 196eqtr3d 2766 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) / (1 + (𝑥↑2))) = (1 / (𝑥 − i)))
198193, 197oveq12d 7405 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))) = ((1 / (𝑥 + i)) − (1 / (𝑥 − i))))
199149, 162, 1983eqtr3rd 2773 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → ((1 / (𝑥 + i)) − (1 / (𝑥 − i))) = ((2 / i) / (1 + (𝑥↑2))))
200199mpteq2dva 5200 . . . . 5 (⊤ → (𝑥𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))) = (𝑥𝑆 ↦ ((2 / i) / (1 + (𝑥↑2)))))
201138, 200eqtrd 2764 . . . 4 (⊤ → (ℂ D (𝑥𝑆 ↦ ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) = (𝑥𝑆 ↦ ((2 / i) / (1 + (𝑥↑2)))))
202 halfcl 12408 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2034, 202mp1i 13 . . . 4 (⊤ → (i / 2) ∈ ℂ)
2042, 23, 24, 201, 203dvmptcmul 25868 . . 3 (⊤ → (ℂ D (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))) = (𝑥𝑆 ↦ ((i / 2) · ((2 / i) / (1 + (𝑥↑2))))))
205 df-atan 26777 . . . . . . 7 arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
206205reseq1i 5946 . . . . . 6 (arctan ↾ 𝑆) = ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆)
207 atanf 26790 . . . . . . . . 9 arctan:(ℂ ∖ {-i, i})⟶ℂ
208207fdmi 6699 . . . . . . . 8 dom arctan = (ℂ ∖ {-i, i})
2097, 208sseqtri 3995 . . . . . . 7 𝑆 ⊆ (ℂ ∖ {-i, i})
210 resmpt 6008 . . . . . . 7 (𝑆 ⊆ (ℂ ∖ {-i, i}) → ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))))
211209, 210ax-mp 5 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
212206, 211eqtri 2752 . . . . 5 (arctan ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
213212a1i 11 . . . 4 (⊤ → (arctan ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))))
214213oveq2d 7403 . . 3 (⊤ → (ℂ D (arctan ↾ 𝑆)) = (ℂ D (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))))
215 2ne0 12290 . . . . . . 7 2 ≠ 0
216 divcan6 11889 . . . . . . 7 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((i / 2) · (2 / i)) = 1)
2174, 84, 154, 215, 216mp4an 693 . . . . . 6 ((i / 2) · (2 / i)) = 1
218217oveq1i 7397 . . . . 5 (((i / 2) · (2 / i)) / (1 + (𝑥↑2))) = (1 / (1 + (𝑥↑2)))
2194, 202mp1i 13 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (i / 2) ∈ ℂ)
220154, 4, 84divcli 11924 . . . . . . 7 (2 / i) ∈ ℂ
221220a1i 11 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (2 / i) ∈ ℂ)
222219, 221, 145, 148divassd 11993 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (((i / 2) · (2 / i)) / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1 + (𝑥↑2)))))
223218, 222eqtr3id 2778 . . . 4 ((⊤ ∧ 𝑥𝑆) → (1 / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1 + (𝑥↑2)))))
224223mpteq2dva 5200 . . 3 (⊤ → (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2)))) = (𝑥𝑆 ↦ ((i / 2) · ((2 / i) / (1 + (𝑥↑2))))))
225204, 214, 2243eqtr4d 2774 . 2 (⊤ → (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2)))))
226225mptru 1547 1 (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  {cpr 4591  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  -∞cmnf 11206  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  (,]cioc 13307  cexp 14026  TopOpenctopn 17384  fldccnfld 21264   D cdv 25764  logclog 26463  arctancatan 26774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-atan 26777
This theorem is referenced by:  atancn  26846
  Copyright terms: Public domain W3C validator