MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvatan Structured version   Visualization version   GIF version

Theorem dvatan 26094
Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
dvatan (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem dvatan
StepHypRef Expression
1 cnelprrecn 10973 . . . . 5 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-1cn 10938 . . . . . . 7 1 ∈ ℂ
4 ax-icn 10939 . . . . . . . 8 i ∈ ℂ
5 atansopn.d . . . . . . . . . . . 12 𝐷 = (ℂ ∖ (-∞(,]0))
6 atansopn.s . . . . . . . . . . . 12 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
75, 6atansssdm 26092 . . . . . . . . . . 11 𝑆 ⊆ dom arctan
8 simpr 485 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → 𝑥𝑆)
97, 8sselid 3920 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → 𝑥 ∈ dom arctan)
10 atandm2 26036 . . . . . . . . . 10 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ≠ 0 ∧ (1 + (i · 𝑥)) ≠ 0))
119, 10sylib 217 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ≠ 0 ∧ (1 + (i · 𝑥)) ≠ 0))
1211simp1d 1141 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
13 mulcl 10964 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
144, 12, 13sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (i · 𝑥) ∈ ℂ)
15 subcl 11229 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ)
163, 14, 15sylancr 587 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ∈ ℂ)
1711simp2d 1142 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ≠ 0)
1816, 17logcld 25735 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (log‘(1 − (i · 𝑥))) ∈ ℂ)
19 addcl 10962 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ)
203, 14, 19sylancr 587 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ∈ ℂ)
2111simp3d 1143 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ≠ 0)
2220, 21logcld 25735 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (log‘(1 + (i · 𝑥))) ∈ ℂ)
2318, 22subcld 11341 . . . 4 ((⊤ ∧ 𝑥𝑆) → ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))) ∈ ℂ)
24 ovexd 7319 . . . 4 ((⊤ ∧ 𝑥𝑆) → ((2 / i) / (1 + (𝑥↑2))) ∈ V)
25 ovexd 7319 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 / (𝑥 + i)) ∈ V)
265, 6atans2 26090 . . . . . . . . . 10 (𝑥𝑆 ↔ (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ∈ 𝐷 ∧ (1 + (i · 𝑥)) ∈ 𝐷))
2726simp2bi 1145 . . . . . . . . 9 (𝑥𝑆 → (1 − (i · 𝑥)) ∈ 𝐷)
2827adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ∈ 𝐷)
29 negex 11228 . . . . . . . . 9 -i ∈ V
3029a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → -i ∈ V)
315logdmss 25806 . . . . . . . . . 10 𝐷 ⊆ (ℂ ∖ {0})
32 simpr 485 . . . . . . . . . 10 ((⊤ ∧ 𝑦𝐷) → 𝑦𝐷)
3331, 32sselid 3920 . . . . . . . . 9 ((⊤ ∧ 𝑦𝐷) → 𝑦 ∈ (ℂ ∖ {0}))
34 logf1o 25729 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
35 f1of 6725 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
3634, 35ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
3736ffvelrni 6969 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → (log‘𝑦) ∈ ran log)
38 logrncn 25727 . . . . . . . . 9 ((log‘𝑦) ∈ ran log → (log‘𝑦) ∈ ℂ)
3933, 37, 383syl 18 . . . . . . . 8 ((⊤ ∧ 𝑦𝐷) → (log‘𝑦) ∈ ℂ)
40 ovexd 7319 . . . . . . . 8 ((⊤ ∧ 𝑦𝐷) → (1 / 𝑦) ∈ V)
414a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
4241, 13sylan 580 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
433, 42, 15sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ)
4429a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ V)
45 1cnd 10979 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
46 0cnd 10977 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℂ)
47 1cnd 10979 . . . . . . . . . . . 12 (⊤ → 1 ∈ ℂ)
482, 47dvmptc 25131 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
494a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
50 simpr 485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
512dvmptid 25130 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
522, 50, 45, 51, 41dvmptcmul 25137 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
534mulid1i 10988 . . . . . . . . . . . . 13 (i · 1) = i
5453mpteq2i 5180 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
5552, 54eqtrdi 2795 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
562, 45, 46, 48, 42, 49, 55dvmptsub 25140 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 − i)))
57 df-neg 11217 . . . . . . . . . . 11 -i = (0 − i)
5857mpteq2i 5180 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -i) = (𝑥 ∈ ℂ ↦ (0 − i))
5956, 58eqtr4di 2797 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ -i))
606ssrab3 4016 . . . . . . . . . 10 𝑆 ⊆ ℂ
6160a1i 11 . . . . . . . . 9 (⊤ → 𝑆 ⊆ ℂ)
62 eqid 2739 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6362cnfldtopon 23955 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
6463toponrestid 22079 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
655, 6atansopn 26091 . . . . . . . . . 10 𝑆 ∈ (TopOpen‘ℂfld)
6665a1i 11 . . . . . . . . 9 (⊤ → 𝑆 ∈ (TopOpen‘ℂfld))
672, 43, 44, 59, 61, 64, 62, 66dvmptres 25136 . . . . . . . 8 (⊤ → (ℂ D (𝑥𝑆 ↦ (1 − (i · 𝑥)))) = (𝑥𝑆 ↦ -i))
68 fssres 6649 . . . . . . . . . . . . . 14 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
6936, 31, 68mp2an 689 . . . . . . . . . . . . 13 (log ↾ 𝐷):𝐷⟶ran log
7069a1i 11 . . . . . . . . . . . 12 (⊤ → (log ↾ 𝐷):𝐷⟶ran log)
7170feqmptd 6846 . . . . . . . . . . 11 (⊤ → (log ↾ 𝐷) = (𝑦𝐷 ↦ ((log ↾ 𝐷)‘𝑦)))
72 fvres 6802 . . . . . . . . . . . 12 (𝑦𝐷 → ((log ↾ 𝐷)‘𝑦) = (log‘𝑦))
7372mpteq2ia 5178 . . . . . . . . . . 11 (𝑦𝐷 ↦ ((log ↾ 𝐷)‘𝑦)) = (𝑦𝐷 ↦ (log‘𝑦))
7471, 73eqtr2di 2796 . . . . . . . . . 10 (⊤ → (𝑦𝐷 ↦ (log‘𝑦)) = (log ↾ 𝐷))
7574oveq2d 7300 . . . . . . . . 9 (⊤ → (ℂ D (𝑦𝐷 ↦ (log‘𝑦))) = (ℂ D (log ↾ 𝐷)))
765dvlog 25815 . . . . . . . . 9 (ℂ D (log ↾ 𝐷)) = (𝑦𝐷 ↦ (1 / 𝑦))
7775, 76eqtrdi 2795 . . . . . . . 8 (⊤ → (ℂ D (𝑦𝐷 ↦ (log‘𝑦))) = (𝑦𝐷 ↦ (1 / 𝑦)))
78 fveq2 6783 . . . . . . . 8 (𝑦 = (1 − (i · 𝑥)) → (log‘𝑦) = (log‘(1 − (i · 𝑥))))
79 oveq2 7292 . . . . . . . 8 (𝑦 = (1 − (i · 𝑥)) → (1 / 𝑦) = (1 / (1 − (i · 𝑥))))
802, 2, 28, 30, 39, 40, 67, 77, 78, 79dvmptco 25145 . . . . . . 7 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 − (i · 𝑥))))) = (𝑥𝑆 ↦ ((1 / (1 − (i · 𝑥))) · -i)))
81 irec 13927 . . . . . . . . . 10 (1 / i) = -i
8281oveq2i 7295 . . . . . . . . 9 ((1 / (1 − (i · 𝑥))) · (1 / i)) = ((1 / (1 − (i · 𝑥))) · -i)
834a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → i ∈ ℂ)
84 ine0 11419 . . . . . . . . . . . 12 i ≠ 0
8584a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → i ≠ 0)
8616, 83, 17, 85recdiv2d 11778 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) / i) = (1 / ((1 − (i · 𝑥)) · i)))
8716, 17reccld 11753 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (1 / (1 − (i · 𝑥))) ∈ ℂ)
8887, 83, 85divrecd 11763 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) / i) = ((1 / (1 − (i · 𝑥))) · (1 / i)))
89 1cnd 10979 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → 1 ∈ ℂ)
9089, 14, 83subdird 11441 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = ((1 · i) − ((i · 𝑥) · i)))
914mulid2i 10989 . . . . . . . . . . . . . . 15 (1 · i) = i
9291a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → (1 · i) = i)
9383, 12, 83mul32d 11194 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) · i) = ((i · i) · 𝑥))
94 ixi 11613 . . . . . . . . . . . . . . . . 17 (i · i) = -1
9594oveq1i 7294 . . . . . . . . . . . . . . . 16 ((i · i) · 𝑥) = (-1 · 𝑥)
9612mulm1d 11436 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥𝑆) → (-1 · 𝑥) = -𝑥)
9795, 96eqtrid 2791 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥𝑆) → ((i · i) · 𝑥) = -𝑥)
9893, 97eqtrd 2779 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) · i) = -𝑥)
9992, 98oveq12d 7302 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((1 · i) − ((i · 𝑥) · i)) = (i − -𝑥))
100 subneg 11279 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i − -𝑥) = (i + 𝑥))
1014, 12, 100sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → (i − -𝑥) = (i + 𝑥))
10290, 99, 1013eqtrd 2783 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = (i + 𝑥))
10383, 12, 102comraddd 11198 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = (𝑥 + i))
104103oveq2d 7300 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 − (i · 𝑥)) · i)) = (1 / (𝑥 + i)))
10586, 88, 1043eqtr3d 2787 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) · (1 / i)) = (1 / (𝑥 + i)))
10682, 105eqtr3id 2793 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) · -i) = (1 / (𝑥 + i)))
107106mpteq2dva 5175 . . . . . . 7 (⊤ → (𝑥𝑆 ↦ ((1 / (1 − (i · 𝑥))) · -i)) = (𝑥𝑆 ↦ (1 / (𝑥 + i))))
10880, 107eqtrd 2779 . . . . . 6 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 − (i · 𝑥))))) = (𝑥𝑆 ↦ (1 / (𝑥 + i))))
109 ovexd 7319 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 / (𝑥 − i)) ∈ V)
11026simp3bi 1146 . . . . . . . . 9 (𝑥𝑆 → (1 + (i · 𝑥)) ∈ 𝐷)
111110adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ∈ 𝐷)
1123, 42, 19sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ)
1132, 45, 46, 48, 42, 49, 55dvmptadd 25133 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 + i)))
1144addid2i 11172 . . . . . . . . . . 11 (0 + i) = i
115114mpteq2i 5180 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (0 + i)) = (𝑥 ∈ ℂ ↦ i)
116113, 115eqtrdi 2795 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ i))
1172, 112, 49, 116, 61, 64, 62, 66dvmptres 25136 . . . . . . . 8 (⊤ → (ℂ D (𝑥𝑆 ↦ (1 + (i · 𝑥)))) = (𝑥𝑆 ↦ i))
118 fveq2 6783 . . . . . . . 8 (𝑦 = (1 + (i · 𝑥)) → (log‘𝑦) = (log‘(1 + (i · 𝑥))))
119 oveq2 7292 . . . . . . . 8 (𝑦 = (1 + (i · 𝑥)) → (1 / 𝑦) = (1 / (1 + (i · 𝑥))))
1202, 2, 111, 83, 39, 40, 117, 77, 118, 119dvmptco 25145 . . . . . . 7 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 + (i · 𝑥))))) = (𝑥𝑆 ↦ ((1 / (1 + (i · 𝑥))) · i)))
12189, 20, 83, 21, 85divdiv2d 11792 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 + (i · 𝑥)) / i)) = ((1 · i) / (1 + (i · 𝑥))))
12289, 14, 83, 85divdird 11798 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 + (i · 𝑥)) / i) = ((1 / i) + ((i · 𝑥) / i)))
12381a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (1 / i) = -i)
12412, 83, 85divcan3d 11765 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) / i) = 𝑥)
125123, 124oveq12d 7302 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 / i) + ((i · 𝑥) / i)) = (-i + 𝑥))
126 negicn 11231 . . . . . . . . . . . . 13 -i ∈ ℂ
127 addcom 11170 . . . . . . . . . . . . 13 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i + 𝑥) = (𝑥 + -i))
128126, 12, 127sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (-i + 𝑥) = (𝑥 + -i))
129 negsub 11278 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 + -i) = (𝑥 − i))
13012, 4, 129sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (𝑥 + -i) = (𝑥 − i))
131128, 130eqtrd 2779 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (-i + 𝑥) = (𝑥 − i))
132122, 125, 1313eqtrd 2783 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 + (i · 𝑥)) / i) = (𝑥 − i))
133132oveq2d 7300 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 + (i · 𝑥)) / i)) = (1 / (𝑥 − i)))
13489, 83, 20, 21div23d 11797 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((1 · i) / (1 + (i · 𝑥))) = ((1 / (1 + (i · 𝑥))) · i))
135121, 133, 1343eqtr3rd 2788 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 + (i · 𝑥))) · i) = (1 / (𝑥 − i)))
136135mpteq2dva 5175 . . . . . . 7 (⊤ → (𝑥𝑆 ↦ ((1 / (1 + (i · 𝑥))) · i)) = (𝑥𝑆 ↦ (1 / (𝑥 − i))))
137120, 136eqtrd 2779 . . . . . 6 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 + (i · 𝑥))))) = (𝑥𝑆 ↦ (1 / (𝑥 − i))))
1382, 18, 25, 108, 22, 109, 137dvmptsub 25140 . . . . 5 (⊤ → (ℂ D (𝑥𝑆 ↦ ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) = (𝑥𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))))
139 subcl 11229 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 − i) ∈ ℂ)
14012, 4, 139sylancl 586 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (𝑥 − i) ∈ ℂ)
141 addcl 10962 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 + i) ∈ ℂ)
14212, 4, 141sylancl 586 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (𝑥 + i) ∈ ℂ)
14312sqcld 13871 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (𝑥↑2) ∈ ℂ)
144 addcl 10962 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 + (𝑥↑2)) ∈ ℂ)
1453, 143, 144sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (𝑥↑2)) ∈ ℂ)
146 atandm4 26038 . . . . . . . . . 10 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 + (𝑥↑2)) ≠ 0))
147146simprbi 497 . . . . . . . . 9 (𝑥 ∈ dom arctan → (1 + (𝑥↑2)) ≠ 0)
1489, 147syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (𝑥↑2)) ≠ 0)
149140, 142, 145, 148divsubdird 11799 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))))
150130oveq1d 7299 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + -i) − (𝑥 + i)) = ((𝑥 − i) − (𝑥 + i)))
151126a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → -i ∈ ℂ)
15212, 151, 83pnpcand 11378 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + -i) − (𝑥 + i)) = (-i − i))
153150, 152eqtr3d 2781 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) − (𝑥 + i)) = (-i − i))
154 2cn 12057 . . . . . . . . . . . 12 2 ∈ ℂ
155154, 4, 84divreci 11729 . . . . . . . . . . 11 (2 / i) = (2 · (1 / i))
15681oveq2i 7295 . . . . . . . . . . 11 (2 · (1 / i)) = (2 · -i)
157155, 156eqtri 2767 . . . . . . . . . 10 (2 / i) = (2 · -i)
1581262timesi 12120 . . . . . . . . . 10 (2 · -i) = (-i + -i)
159126, 4negsubi 11308 . . . . . . . . . 10 (-i + -i) = (-i − i)
160157, 158, 1593eqtri 2771 . . . . . . . . 9 (2 / i) = (-i − i)
161153, 160eqtr4di 2797 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) − (𝑥 + i)) = (2 / i))
162161oveq1d 7299 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = ((2 / i) / (1 + (𝑥↑2))))
163140mulid1d 11001 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · 1) = (𝑥 − i))
164140, 142mulcomd 11005 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · (𝑥 + i)) = ((𝑥 + i) · (𝑥 − i)))
165 i2 13928 . . . . . . . . . . . . . 14 (i↑2) = -1
166165oveq2i 7295 . . . . . . . . . . . . 13 ((𝑥↑2) − (i↑2)) = ((𝑥↑2) − -1)
167 subneg 11279 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1))
168143, 3, 167sylancl 586 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1))
169166, 168eqtrid 2791 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − (i↑2)) = ((𝑥↑2) + 1))
170 subsq 13935 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥↑2) − (i↑2)) = ((𝑥 + i) · (𝑥 − i)))
17112, 4, 170sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − (i↑2)) = ((𝑥 + i) · (𝑥 − i)))
172 addcom 11170 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) + 1) = (1 + (𝑥↑2)))
173143, 3, 172sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) + 1) = (1 + (𝑥↑2)))
174169, 171, 1733eqtr3d 2787 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) · (𝑥 − i)) = (1 + (𝑥↑2)))
175164, 174eqtrd 2779 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · (𝑥 + i)) = (1 + (𝑥↑2)))
176163, 175oveq12d 7302 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) · 1) / ((𝑥 − i) · (𝑥 + i))) = ((𝑥 − i) / (1 + (𝑥↑2))))
177 subneg 11279 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 − -i) = (𝑥 + i))
17812, 4, 177sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (𝑥 − -i) = (𝑥 + i))
179 atandm 26035 . . . . . . . . . . . . . 14 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i))
1809, 179sylib 217 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i))
181180simp2d 1142 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → 𝑥 ≠ -i)
182 subeq0 11256 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ -i ∈ ℂ) → ((𝑥 − -i) = 0 ↔ 𝑥 = -i))
183182necon3bid 2989 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ -i ∈ ℂ) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i))
18412, 126, 183sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i))
185181, 184mpbird 256 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (𝑥 − -i) ≠ 0)
186178, 185eqnetrrd 3013 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (𝑥 + i) ≠ 0)
187180simp3d 1143 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → 𝑥 ≠ i)
188 subeq0 11256 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥 − i) = 0 ↔ 𝑥 = i))
189188necon3bid 2989 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i))
19012, 4, 189sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i))
191187, 190mpbird 256 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (𝑥 − i) ≠ 0)
19289, 142, 140, 186, 191divcan5d 11786 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) · 1) / ((𝑥 − i) · (𝑥 + i))) = (1 / (𝑥 + i)))
193176, 192eqtr3d 2781 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) / (1 + (𝑥↑2))) = (1 / (𝑥 + i)))
194142mulid1d 11001 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) · 1) = (𝑥 + i))
195194, 174oveq12d 7302 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = ((𝑥 + i) / (1 + (𝑥↑2))))
19689, 140, 142, 191, 186divcan5d 11786 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = (1 / (𝑥 − i)))
197195, 196eqtr3d 2781 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) / (1 + (𝑥↑2))) = (1 / (𝑥 − i)))
198193, 197oveq12d 7302 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))) = ((1 / (𝑥 + i)) − (1 / (𝑥 − i))))
199149, 162, 1983eqtr3rd 2788 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → ((1 / (𝑥 + i)) − (1 / (𝑥 − i))) = ((2 / i) / (1 + (𝑥↑2))))
200199mpteq2dva 5175 . . . . 5 (⊤ → (𝑥𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))) = (𝑥𝑆 ↦ ((2 / i) / (1 + (𝑥↑2)))))
201138, 200eqtrd 2779 . . . 4 (⊤ → (ℂ D (𝑥𝑆 ↦ ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) = (𝑥𝑆 ↦ ((2 / i) / (1 + (𝑥↑2)))))
202 halfcl 12207 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2034, 202mp1i 13 . . . 4 (⊤ → (i / 2) ∈ ℂ)
2042, 23, 24, 201, 203dvmptcmul 25137 . . 3 (⊤ → (ℂ D (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))) = (𝑥𝑆 ↦ ((i / 2) · ((2 / i) / (1 + (𝑥↑2))))))
205 df-atan 26026 . . . . . . 7 arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
206205reseq1i 5890 . . . . . 6 (arctan ↾ 𝑆) = ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆)
207 atanf 26039 . . . . . . . . 9 arctan:(ℂ ∖ {-i, i})⟶ℂ
208207fdmi 6621 . . . . . . . 8 dom arctan = (ℂ ∖ {-i, i})
2097, 208sseqtri 3958 . . . . . . 7 𝑆 ⊆ (ℂ ∖ {-i, i})
210 resmpt 5948 . . . . . . 7 (𝑆 ⊆ (ℂ ∖ {-i, i}) → ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))))
211209, 210ax-mp 5 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
212206, 211eqtri 2767 . . . . 5 (arctan ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
213212a1i 11 . . . 4 (⊤ → (arctan ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))))
214213oveq2d 7300 . . 3 (⊤ → (ℂ D (arctan ↾ 𝑆)) = (ℂ D (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))))
215 2ne0 12086 . . . . . . 7 2 ≠ 0
216 divcan6 11691 . . . . . . 7 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((i / 2) · (2 / i)) = 1)
2174, 84, 154, 215, 216mp4an 690 . . . . . 6 ((i / 2) · (2 / i)) = 1
218217oveq1i 7294 . . . . 5 (((i / 2) · (2 / i)) / (1 + (𝑥↑2))) = (1 / (1 + (𝑥↑2)))
2194, 202mp1i 13 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (i / 2) ∈ ℂ)
220154, 4, 84divcli 11726 . . . . . . 7 (2 / i) ∈ ℂ
221220a1i 11 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (2 / i) ∈ ℂ)
222219, 221, 145, 148divassd 11795 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (((i / 2) · (2 / i)) / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1 + (𝑥↑2)))))
223218, 222eqtr3id 2793 . . . 4 ((⊤ ∧ 𝑥𝑆) → (1 / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1 + (𝑥↑2)))))
224223mpteq2dva 5175 . . 3 (⊤ → (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2)))) = (𝑥𝑆 ↦ ((i / 2) · ((2 / i) / (1 + (𝑥↑2))))))
225204, 214, 2243eqtr4d 2789 . 2 (⊤ → (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2)))))
226225mptru 1546 1 (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wtru 1540  wcel 2107  wne 2944  {crab 3069  Vcvv 3433  cdif 3885  wss 3888  {csn 4562  {cpr 4564  cmpt 5158  dom cdm 5590  ran crn 5591  cres 5592  wf 6433  1-1-ontowf1o 6436  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885  -∞cmnf 11016  cmin 11214  -cneg 11215   / cdiv 11641  2c2 12037  (,]cioc 13089  cexp 13791  TopOpenctopn 17141  fldccnfld 20606   D cdv 25036  logclog 25719  arctancatan 26023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-tan 15790  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721  df-atan 26026
This theorem is referenced by:  atancn  26095
  Copyright terms: Public domain W3C validator