MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvatan Structured version   Visualization version   GIF version

Theorem dvatan 26878
Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
dvatan (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem dvatan
StepHypRef Expression
1 cnelprrecn 11137 . . . . 5 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
4 ax-icn 11103 . . . . . . . 8 i ∈ ℂ
5 atansopn.d . . . . . . . . . . . 12 𝐷 = (ℂ ∖ (-∞(,]0))
6 atansopn.s . . . . . . . . . . . 12 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
75, 6atansssdm 26876 . . . . . . . . . . 11 𝑆 ⊆ dom arctan
8 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → 𝑥𝑆)
97, 8sselid 3941 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → 𝑥 ∈ dom arctan)
10 atandm2 26820 . . . . . . . . . 10 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ≠ 0 ∧ (1 + (i · 𝑥)) ≠ 0))
119, 10sylib 218 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ≠ 0 ∧ (1 + (i · 𝑥)) ≠ 0))
1211simp1d 1142 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
13 mulcl 11128 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
144, 12, 13sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (i · 𝑥) ∈ ℂ)
15 subcl 11396 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ)
163, 14, 15sylancr 587 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ∈ ℂ)
1711simp2d 1143 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ≠ 0)
1816, 17logcld 26512 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (log‘(1 − (i · 𝑥))) ∈ ℂ)
19 addcl 11126 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ)
203, 14, 19sylancr 587 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ∈ ℂ)
2111simp3d 1144 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ≠ 0)
2220, 21logcld 26512 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (log‘(1 + (i · 𝑥))) ∈ ℂ)
2318, 22subcld 11509 . . . 4 ((⊤ ∧ 𝑥𝑆) → ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))) ∈ ℂ)
24 ovexd 7404 . . . 4 ((⊤ ∧ 𝑥𝑆) → ((2 / i) / (1 + (𝑥↑2))) ∈ V)
25 ovexd 7404 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 / (𝑥 + i)) ∈ V)
265, 6atans2 26874 . . . . . . . . . 10 (𝑥𝑆 ↔ (𝑥 ∈ ℂ ∧ (1 − (i · 𝑥)) ∈ 𝐷 ∧ (1 + (i · 𝑥)) ∈ 𝐷))
2726simp2bi 1146 . . . . . . . . 9 (𝑥𝑆 → (1 − (i · 𝑥)) ∈ 𝐷)
2827adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 − (i · 𝑥)) ∈ 𝐷)
29 negex 11395 . . . . . . . . 9 -i ∈ V
3029a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → -i ∈ V)
315logdmss 26584 . . . . . . . . . 10 𝐷 ⊆ (ℂ ∖ {0})
32 simpr 484 . . . . . . . . . 10 ((⊤ ∧ 𝑦𝐷) → 𝑦𝐷)
3331, 32sselid 3941 . . . . . . . . 9 ((⊤ ∧ 𝑦𝐷) → 𝑦 ∈ (ℂ ∖ {0}))
34 logf1o 26506 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
35 f1of 6782 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
3634, 35ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
3736ffvelcdmi 7037 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → (log‘𝑦) ∈ ran log)
38 logrncn 26504 . . . . . . . . 9 ((log‘𝑦) ∈ ran log → (log‘𝑦) ∈ ℂ)
3933, 37, 383syl 18 . . . . . . . 8 ((⊤ ∧ 𝑦𝐷) → (log‘𝑦) ∈ ℂ)
40 ovexd 7404 . . . . . . . 8 ((⊤ ∧ 𝑦𝐷) → (1 / 𝑦) ∈ V)
414a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
4241, 13sylan 580 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
433, 42, 15sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ)
4429a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ V)
45 1cnd 11145 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
46 0cnd 11143 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℂ)
47 1cnd 11145 . . . . . . . . . . . 12 (⊤ → 1 ∈ ℂ)
482, 47dvmptc 25895 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
494a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
512dvmptid 25894 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
522, 50, 45, 51, 41dvmptcmul 25901 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
534mulridi 11154 . . . . . . . . . . . . 13 (i · 1) = i
5453mpteq2i 5198 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
5552, 54eqtrdi 2780 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
562, 45, 46, 48, 42, 49, 55dvmptsub 25904 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 − i)))
57 df-neg 11384 . . . . . . . . . . 11 -i = (0 − i)
5857mpteq2i 5198 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -i) = (𝑥 ∈ ℂ ↦ (0 − i))
5956, 58eqtr4di 2782 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ -i))
606ssrab3 4041 . . . . . . . . . 10 𝑆 ⊆ ℂ
6160a1i 11 . . . . . . . . 9 (⊤ → 𝑆 ⊆ ℂ)
62 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6362cnfldtopon 24703 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
6463toponrestid 22841 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
655, 6atansopn 26875 . . . . . . . . . 10 𝑆 ∈ (TopOpen‘ℂfld)
6665a1i 11 . . . . . . . . 9 (⊤ → 𝑆 ∈ (TopOpen‘ℂfld))
672, 43, 44, 59, 61, 64, 62, 66dvmptres 25900 . . . . . . . 8 (⊤ → (ℂ D (𝑥𝑆 ↦ (1 − (i · 𝑥)))) = (𝑥𝑆 ↦ -i))
68 fssres 6708 . . . . . . . . . . . . . 14 ((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷⟶ran log)
6936, 31, 68mp2an 692 . . . . . . . . . . . . 13 (log ↾ 𝐷):𝐷⟶ran log
7069a1i 11 . . . . . . . . . . . 12 (⊤ → (log ↾ 𝐷):𝐷⟶ran log)
7170feqmptd 6911 . . . . . . . . . . 11 (⊤ → (log ↾ 𝐷) = (𝑦𝐷 ↦ ((log ↾ 𝐷)‘𝑦)))
72 fvres 6859 . . . . . . . . . . . 12 (𝑦𝐷 → ((log ↾ 𝐷)‘𝑦) = (log‘𝑦))
7372mpteq2ia 5197 . . . . . . . . . . 11 (𝑦𝐷 ↦ ((log ↾ 𝐷)‘𝑦)) = (𝑦𝐷 ↦ (log‘𝑦))
7471, 73eqtr2di 2781 . . . . . . . . . 10 (⊤ → (𝑦𝐷 ↦ (log‘𝑦)) = (log ↾ 𝐷))
7574oveq2d 7385 . . . . . . . . 9 (⊤ → (ℂ D (𝑦𝐷 ↦ (log‘𝑦))) = (ℂ D (log ↾ 𝐷)))
765dvlog 26593 . . . . . . . . 9 (ℂ D (log ↾ 𝐷)) = (𝑦𝐷 ↦ (1 / 𝑦))
7775, 76eqtrdi 2780 . . . . . . . 8 (⊤ → (ℂ D (𝑦𝐷 ↦ (log‘𝑦))) = (𝑦𝐷 ↦ (1 / 𝑦)))
78 fveq2 6840 . . . . . . . 8 (𝑦 = (1 − (i · 𝑥)) → (log‘𝑦) = (log‘(1 − (i · 𝑥))))
79 oveq2 7377 . . . . . . . 8 (𝑦 = (1 − (i · 𝑥)) → (1 / 𝑦) = (1 / (1 − (i · 𝑥))))
802, 2, 28, 30, 39, 40, 67, 77, 78, 79dvmptco 25909 . . . . . . 7 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 − (i · 𝑥))))) = (𝑥𝑆 ↦ ((1 / (1 − (i · 𝑥))) · -i)))
81 irec 14142 . . . . . . . . . 10 (1 / i) = -i
8281oveq2i 7380 . . . . . . . . 9 ((1 / (1 − (i · 𝑥))) · (1 / i)) = ((1 / (1 − (i · 𝑥))) · -i)
834a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → i ∈ ℂ)
84 ine0 11589 . . . . . . . . . . . 12 i ≠ 0
8584a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → i ≠ 0)
8616, 83, 17, 85recdiv2d 11952 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) / i) = (1 / ((1 − (i · 𝑥)) · i)))
8716, 17reccld 11927 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (1 / (1 − (i · 𝑥))) ∈ ℂ)
8887, 83, 85divrecd 11937 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) / i) = ((1 / (1 − (i · 𝑥))) · (1 / i)))
89 1cnd 11145 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → 1 ∈ ℂ)
9089, 14, 83subdird 11611 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = ((1 · i) − ((i · 𝑥) · i)))
914mullidi 11155 . . . . . . . . . . . . . . 15 (1 · i) = i
9291a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → (1 · i) = i)
9383, 12, 83mul32d 11360 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) · i) = ((i · i) · 𝑥))
94 ixi 11783 . . . . . . . . . . . . . . . . 17 (i · i) = -1
9594oveq1i 7379 . . . . . . . . . . . . . . . 16 ((i · i) · 𝑥) = (-1 · 𝑥)
9612mulm1d 11606 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥𝑆) → (-1 · 𝑥) = -𝑥)
9795, 96eqtrid 2776 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥𝑆) → ((i · i) · 𝑥) = -𝑥)
9893, 97eqtrd 2764 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) · i) = -𝑥)
9992, 98oveq12d 7387 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((1 · i) − ((i · 𝑥) · i)) = (i − -𝑥))
100 subneg 11447 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i − -𝑥) = (i + 𝑥))
1014, 12, 100sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → (i − -𝑥) = (i + 𝑥))
10290, 99, 1013eqtrd 2768 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = (i + 𝑥))
10383, 12, 102comraddd 11364 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 − (i · 𝑥)) · i) = (𝑥 + i))
104103oveq2d 7385 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 − (i · 𝑥)) · i)) = (1 / (𝑥 + i)))
10586, 88, 1043eqtr3d 2772 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) · (1 / i)) = (1 / (𝑥 + i)))
10682, 105eqtr3id 2778 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 − (i · 𝑥))) · -i) = (1 / (𝑥 + i)))
107106mpteq2dva 5195 . . . . . . 7 (⊤ → (𝑥𝑆 ↦ ((1 / (1 − (i · 𝑥))) · -i)) = (𝑥𝑆 ↦ (1 / (𝑥 + i))))
10880, 107eqtrd 2764 . . . . . 6 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 − (i · 𝑥))))) = (𝑥𝑆 ↦ (1 / (𝑥 + i))))
109 ovexd 7404 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (1 / (𝑥 − i)) ∈ V)
11026simp3bi 1147 . . . . . . . . 9 (𝑥𝑆 → (1 + (i · 𝑥)) ∈ 𝐷)
111110adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (i · 𝑥)) ∈ 𝐷)
1123, 42, 19sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ)
1132, 45, 46, 48, 42, 49, 55dvmptadd 25897 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 + i)))
1144addlidi 11338 . . . . . . . . . . 11 (0 + i) = i
115114mpteq2i 5198 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (0 + i)) = (𝑥 ∈ ℂ ↦ i)
116113, 115eqtrdi 2780 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ i))
1172, 112, 49, 116, 61, 64, 62, 66dvmptres 25900 . . . . . . . 8 (⊤ → (ℂ D (𝑥𝑆 ↦ (1 + (i · 𝑥)))) = (𝑥𝑆 ↦ i))
118 fveq2 6840 . . . . . . . 8 (𝑦 = (1 + (i · 𝑥)) → (log‘𝑦) = (log‘(1 + (i · 𝑥))))
119 oveq2 7377 . . . . . . . 8 (𝑦 = (1 + (i · 𝑥)) → (1 / 𝑦) = (1 / (1 + (i · 𝑥))))
1202, 2, 111, 83, 39, 40, 117, 77, 118, 119dvmptco 25909 . . . . . . 7 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 + (i · 𝑥))))) = (𝑥𝑆 ↦ ((1 / (1 + (i · 𝑥))) · i)))
12189, 20, 83, 21, 85divdiv2d 11966 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 + (i · 𝑥)) / i)) = ((1 · i) / (1 + (i · 𝑥))))
12289, 14, 83, 85divdird 11972 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 + (i · 𝑥)) / i) = ((1 / i) + ((i · 𝑥) / i)))
12381a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (1 / i) = -i)
12412, 83, 85divcan3d 11939 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((i · 𝑥) / i) = 𝑥)
125123, 124oveq12d 7387 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((1 / i) + ((i · 𝑥) / i)) = (-i + 𝑥))
126 negicn 11398 . . . . . . . . . . . . 13 -i ∈ ℂ
127 addcom 11336 . . . . . . . . . . . . 13 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i + 𝑥) = (𝑥 + -i))
128126, 12, 127sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (-i + 𝑥) = (𝑥 + -i))
129 negsub 11446 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 + -i) = (𝑥 − i))
13012, 4, 129sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → (𝑥 + -i) = (𝑥 − i))
131128, 130eqtrd 2764 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (-i + 𝑥) = (𝑥 − i))
132122, 125, 1313eqtrd 2768 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((1 + (i · 𝑥)) / i) = (𝑥 − i))
133132oveq2d 7385 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (1 / ((1 + (i · 𝑥)) / i)) = (1 / (𝑥 − i)))
13489, 83, 20, 21div23d 11971 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((1 · i) / (1 + (i · 𝑥))) = ((1 / (1 + (i · 𝑥))) · i))
135121, 133, 1343eqtr3rd 2773 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((1 / (1 + (i · 𝑥))) · i) = (1 / (𝑥 − i)))
136135mpteq2dva 5195 . . . . . . 7 (⊤ → (𝑥𝑆 ↦ ((1 / (1 + (i · 𝑥))) · i)) = (𝑥𝑆 ↦ (1 / (𝑥 − i))))
137120, 136eqtrd 2764 . . . . . 6 (⊤ → (ℂ D (𝑥𝑆 ↦ (log‘(1 + (i · 𝑥))))) = (𝑥𝑆 ↦ (1 / (𝑥 − i))))
1382, 18, 25, 108, 22, 109, 137dvmptsub 25904 . . . . 5 (⊤ → (ℂ D (𝑥𝑆 ↦ ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) = (𝑥𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))))
139 subcl 11396 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 − i) ∈ ℂ)
14012, 4, 139sylancl 586 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (𝑥 − i) ∈ ℂ)
141 addcl 11126 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 + i) ∈ ℂ)
14212, 4, 141sylancl 586 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (𝑥 + i) ∈ ℂ)
14312sqcld 14085 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (𝑥↑2) ∈ ℂ)
144 addcl 11126 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 + (𝑥↑2)) ∈ ℂ)
1453, 143, 144sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (𝑥↑2)) ∈ ℂ)
146 atandm4 26822 . . . . . . . . . 10 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 + (𝑥↑2)) ≠ 0))
147146simprbi 496 . . . . . . . . 9 (𝑥 ∈ dom arctan → (1 + (𝑥↑2)) ≠ 0)
1489, 147syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → (1 + (𝑥↑2)) ≠ 0)
149140, 142, 145, 148divsubdird 11973 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))))
150130oveq1d 7384 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + -i) − (𝑥 + i)) = ((𝑥 − i) − (𝑥 + i)))
151126a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → -i ∈ ℂ)
15212, 151, 83pnpcand 11546 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + -i) − (𝑥 + i)) = (-i − i))
153150, 152eqtr3d 2766 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) − (𝑥 + i)) = (-i − i))
154 2cn 12237 . . . . . . . . . . . 12 2 ∈ ℂ
155154, 4, 84divreci 11903 . . . . . . . . . . 11 (2 / i) = (2 · (1 / i))
15681oveq2i 7380 . . . . . . . . . . 11 (2 · (1 / i)) = (2 · -i)
157155, 156eqtri 2752 . . . . . . . . . 10 (2 / i) = (2 · -i)
1581262timesi 12295 . . . . . . . . . 10 (2 · -i) = (-i + -i)
159126, 4negsubi 11476 . . . . . . . . . 10 (-i + -i) = (-i − i)
160157, 158, 1593eqtri 2756 . . . . . . . . 9 (2 / i) = (-i − i)
161153, 160eqtr4di 2782 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) − (𝑥 + i)) = (2 / i))
162161oveq1d 7384 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = ((2 / i) / (1 + (𝑥↑2))))
163140mulridd 11167 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · 1) = (𝑥 − i))
164140, 142mulcomd 11171 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · (𝑥 + i)) = ((𝑥 + i) · (𝑥 − i)))
165 i2 14143 . . . . . . . . . . . . . 14 (i↑2) = -1
166165oveq2i 7380 . . . . . . . . . . . . 13 ((𝑥↑2) − (i↑2)) = ((𝑥↑2) − -1)
167 subneg 11447 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1))
168143, 3, 167sylancl 586 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1))
169166, 168eqtrid 2776 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − (i↑2)) = ((𝑥↑2) + 1))
170 subsq 14151 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥↑2) − (i↑2)) = ((𝑥 + i) · (𝑥 − i)))
17112, 4, 170sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) − (i↑2)) = ((𝑥 + i) · (𝑥 − i)))
172 addcom 11336 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥↑2) + 1) = (1 + (𝑥↑2)))
173143, 3, 172sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥↑2) + 1) = (1 + (𝑥↑2)))
174169, 171, 1733eqtr3d 2772 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) · (𝑥 − i)) = (1 + (𝑥↑2)))
175164, 174eqtrd 2764 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) · (𝑥 + i)) = (1 + (𝑥↑2)))
176163, 175oveq12d 7387 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) · 1) / ((𝑥 − i) · (𝑥 + i))) = ((𝑥 − i) / (1 + (𝑥↑2))))
177 subneg 11447 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → (𝑥 − -i) = (𝑥 + i))
17812, 4, 177sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (𝑥 − -i) = (𝑥 + i))
179 atandm 26819 . . . . . . . . . . . . . 14 (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i))
1809, 179sylib 218 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥𝑆) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i))
181180simp2d 1143 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → 𝑥 ≠ -i)
182 subeq0 11424 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ -i ∈ ℂ) → ((𝑥 − -i) = 0 ↔ 𝑥 = -i))
183182necon3bid 2969 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ -i ∈ ℂ) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i))
18412, 126, 183sylancl 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i))
185181, 184mpbird 257 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → (𝑥 − -i) ≠ 0)
186178, 185eqnetrrd 2993 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (𝑥 + i) ≠ 0)
187180simp3d 1144 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → 𝑥 ≠ i)
188 subeq0 11424 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥 − i) = 0 ↔ 𝑥 = i))
189188necon3bid 2969 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ i ∈ ℂ) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i))
19012, 4, 189sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i))
191187, 190mpbird 257 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → (𝑥 − i) ≠ 0)
19289, 142, 140, 186, 191divcan5d 11960 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) · 1) / ((𝑥 − i) · (𝑥 + i))) = (1 / (𝑥 + i)))
193176, 192eqtr3d 2766 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 − i) / (1 + (𝑥↑2))) = (1 / (𝑥 + i)))
194142mulridd 11167 . . . . . . . . . 10 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) · 1) = (𝑥 + i))
195194, 174oveq12d 7387 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = ((𝑥 + i) / (1 + (𝑥↑2))))
19689, 140, 142, 191, 186divcan5d 11960 . . . . . . . . 9 ((⊤ ∧ 𝑥𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = (1 / (𝑥 − i)))
197195, 196eqtr3d 2766 . . . . . . . 8 ((⊤ ∧ 𝑥𝑆) → ((𝑥 + i) / (1 + (𝑥↑2))) = (1 / (𝑥 − i)))
198193, 197oveq12d 7387 . . . . . . 7 ((⊤ ∧ 𝑥𝑆) → (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))) = ((1 / (𝑥 + i)) − (1 / (𝑥 − i))))
199149, 162, 1983eqtr3rd 2773 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → ((1 / (𝑥 + i)) − (1 / (𝑥 − i))) = ((2 / i) / (1 + (𝑥↑2))))
200199mpteq2dva 5195 . . . . 5 (⊤ → (𝑥𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))) = (𝑥𝑆 ↦ ((2 / i) / (1 + (𝑥↑2)))))
201138, 200eqtrd 2764 . . . 4 (⊤ → (ℂ D (𝑥𝑆 ↦ ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) = (𝑥𝑆 ↦ ((2 / i) / (1 + (𝑥↑2)))))
202 halfcl 12384 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2034, 202mp1i 13 . . . 4 (⊤ → (i / 2) ∈ ℂ)
2042, 23, 24, 201, 203dvmptcmul 25901 . . 3 (⊤ → (ℂ D (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))) = (𝑥𝑆 ↦ ((i / 2) · ((2 / i) / (1 + (𝑥↑2))))))
205 df-atan 26810 . . . . . . 7 arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
206205reseq1i 5935 . . . . . 6 (arctan ↾ 𝑆) = ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆)
207 atanf 26823 . . . . . . . . 9 arctan:(ℂ ∖ {-i, i})⟶ℂ
208207fdmi 6681 . . . . . . . 8 dom arctan = (ℂ ∖ {-i, i})
2097, 208sseqtri 3992 . . . . . . 7 𝑆 ⊆ (ℂ ∖ {-i, i})
210 resmpt 5997 . . . . . . 7 (𝑆 ⊆ (ℂ ∖ {-i, i}) → ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))))
211209, 210ax-mp 5 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
212206, 211eqtri 2752 . . . . 5 (arctan ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
213212a1i 11 . . . 4 (⊤ → (arctan ↾ 𝑆) = (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))))
214213oveq2d 7385 . . 3 (⊤ → (ℂ D (arctan ↾ 𝑆)) = (ℂ D (𝑥𝑆 ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))))
215 2ne0 12266 . . . . . . 7 2 ≠ 0
216 divcan6 11865 . . . . . . 7 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((i / 2) · (2 / i)) = 1)
2174, 84, 154, 215, 216mp4an 693 . . . . . 6 ((i / 2) · (2 / i)) = 1
218217oveq1i 7379 . . . . 5 (((i / 2) · (2 / i)) / (1 + (𝑥↑2))) = (1 / (1 + (𝑥↑2)))
2194, 202mp1i 13 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (i / 2) ∈ ℂ)
220154, 4, 84divcli 11900 . . . . . . 7 (2 / i) ∈ ℂ
221220a1i 11 . . . . . 6 ((⊤ ∧ 𝑥𝑆) → (2 / i) ∈ ℂ)
222219, 221, 145, 148divassd 11969 . . . . 5 ((⊤ ∧ 𝑥𝑆) → (((i / 2) · (2 / i)) / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1 + (𝑥↑2)))))
223218, 222eqtr3id 2778 . . . 4 ((⊤ ∧ 𝑥𝑆) → (1 / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1 + (𝑥↑2)))))
224223mpteq2dva 5195 . . 3 (⊤ → (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2)))) = (𝑥𝑆 ↦ ((i / 2) · ((2 / i) / (1 + (𝑥↑2))))))
225204, 214, 2243eqtr4d 2774 . 2 (⊤ → (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2)))))
226225mptru 1547 1 (ℂ D (arctan ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / (1 + (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  {cpr 4587  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  -∞cmnf 11182  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  (,]cioc 13283  cexp 14002  TopOpenctopn 17360  fldccnfld 21296   D cdv 25797  logclog 26496  arctancatan 26807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-atan 26810
This theorem is referenced by:  atancn  26879
  Copyright terms: Public domain W3C validator