Proof of Theorem dvatan
Step | Hyp | Ref
| Expression |
1 | | cnelprrecn 10681 |
. . . . 5
⊢ ℂ
∈ {ℝ, ℂ} |
2 | 1 | a1i 11 |
. . . 4
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
3 | | ax-1cn 10646 |
. . . . . . 7
⊢ 1 ∈
ℂ |
4 | | ax-icn 10647 |
. . . . . . . 8
⊢ i ∈
ℂ |
5 | | atansopn.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
6 | | atansopn.s |
. . . . . . . . . . . 12
⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
7 | 5, 6 | atansssdm 25631 |
. . . . . . . . . . 11
⊢ 𝑆 ⊆ dom
arctan |
8 | | simpr 488 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → 𝑥 ∈ 𝑆) |
9 | 7, 8 | sseldi 3892 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → 𝑥 ∈ dom
arctan) |
10 | | atandm2 25575 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 −
(i · 𝑥)) ≠ 0
∧ (1 + (i · 𝑥))
≠ 0)) |
11 | 9, 10 | sylib 221 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 ∈ ℂ ∧ (1 −
(i · 𝑥)) ≠ 0
∧ (1 + (i · 𝑥))
≠ 0)) |
12 | 11 | simp1d 1139 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → 𝑥 ∈
ℂ) |
13 | | mulcl 10672 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ 𝑥
∈ ℂ) → (i · 𝑥) ∈ ℂ) |
14 | 4, 12, 13 | sylancr 590 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (i
· 𝑥) ∈
ℂ) |
15 | | subcl 10936 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 − (i
· 𝑥)) ∈
ℂ) |
16 | 3, 14, 15 | sylancr 590 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 −
(i · 𝑥)) ∈
ℂ) |
17 | 11 | simp2d 1140 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 −
(i · 𝑥)) ≠
0) |
18 | 16, 17 | logcld 25274 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ 𝑆) →
(log‘(1 − (i · 𝑥))) ∈ ℂ) |
19 | | addcl 10670 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (i · 𝑥) ∈ ℂ) → (1 + (i ·
𝑥)) ∈
ℂ) |
20 | 3, 14, 19 | sylancr 590 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 + (i
· 𝑥)) ∈
ℂ) |
21 | 11 | simp3d 1141 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 + (i
· 𝑥)) ≠
0) |
22 | 20, 21 | logcld 25274 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ 𝑆) →
(log‘(1 + (i · 𝑥))) ∈ ℂ) |
23 | 18, 22 | subcld 11048 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝑆) →
((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))) ∈
ℂ) |
24 | | ovexd 7191 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((2 / i) /
(1 + (𝑥↑2))) ∈
V) |
25 | | ovexd 7191 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 /
(𝑥 + i)) ∈
V) |
26 | 5, 6 | atans2 25629 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℂ ∧ (1 − (i ·
𝑥)) ∈ 𝐷 ∧ (1 + (i · 𝑥)) ∈ 𝐷)) |
27 | 26 | simp2bi 1143 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → (1 − (i · 𝑥)) ∈ 𝐷) |
28 | 27 | adantl 485 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 −
(i · 𝑥)) ∈
𝐷) |
29 | | negex 10935 |
. . . . . . . . 9
⊢ -i ∈
V |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → -i ∈
V) |
31 | 5 | logdmss 25345 |
. . . . . . . . . 10
⊢ 𝐷 ⊆ (ℂ ∖
{0}) |
32 | | simpr 488 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑦
∈ 𝐷) → 𝑦 ∈ 𝐷) |
33 | 31, 32 | sseldi 3892 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑦
∈ 𝐷) → 𝑦 ∈ (ℂ ∖
{0})) |
34 | | logf1o 25268 |
. . . . . . . . . . 11
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
35 | | f1of 6607 |
. . . . . . . . . . 11
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . 10
⊢
log:(ℂ ∖ {0})⟶ran log |
37 | 36 | ffvelrni 6847 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ℂ ∖ {0})
→ (log‘𝑦) ∈
ran log) |
38 | | logrncn 25266 |
. . . . . . . . 9
⊢
((log‘𝑦)
∈ ran log → (log‘𝑦) ∈ ℂ) |
39 | 33, 37, 38 | 3syl 18 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑦
∈ 𝐷) →
(log‘𝑦) ∈
ℂ) |
40 | | ovexd 7191 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑦
∈ 𝐷) → (1 / 𝑦) ∈ V) |
41 | 4 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ i ∈ ℂ) |
42 | 41, 13 | sylan 583 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (i · 𝑥) ∈ ℂ) |
43 | 3, 42, 15 | sylancr 590 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (1 − (i · 𝑥)) ∈ ℂ) |
44 | 29 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℂ) → -i ∈ V) |
45 | | 1cnd 10687 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 1 ∈ ℂ) |
46 | | 0cnd 10685 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 0 ∈ ℂ) |
47 | | 1cnd 10687 |
. . . . . . . . . . . 12
⊢ (⊤
→ 1 ∈ ℂ) |
48 | 2, 47 | dvmptc 24670 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ 1)) = (𝑥
∈ ℂ ↦ 0)) |
49 | 4 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → i ∈ ℂ) |
50 | | simpr 488 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 𝑥
∈ ℂ) |
51 | 2 | dvmptid 24669 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ 𝑥)) =
(𝑥 ∈ ℂ ↦
1)) |
52 | 2, 50, 45, 51, 41 | dvmptcmul 24676 |
. . . . . . . . . . . 12
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i ·
1))) |
53 | 4 | mulid1i 10696 |
. . . . . . . . . . . . 13
⊢ (i
· 1) = i |
54 | 53 | mpteq2i 5128 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ ↦ (i
· 1)) = (𝑥 ∈
ℂ ↦ i) |
55 | 52, 54 | eqtrdi 2809 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i)) |
56 | 2, 45, 46, 48, 42, 49, 55 | dvmptsub 24679 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 −
i))) |
57 | | df-neg 10924 |
. . . . . . . . . . 11
⊢ -i = (0
− i) |
58 | 57 | mpteq2i 5128 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ ↦ -i) =
(𝑥 ∈ ℂ ↦
(0 − i)) |
59 | 56, 58 | eqtr4di 2811 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (1 − (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ -i)) |
60 | 6 | ssrab3 3988 |
. . . . . . . . . 10
⊢ 𝑆 ⊆
ℂ |
61 | 60 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 𝑆 ⊆
ℂ) |
62 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
63 | 62 | cnfldtopon 23497 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
64 | 63 | toponrestid 21634 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
65 | 5, 6 | atansopn 25630 |
. . . . . . . . . 10
⊢ 𝑆 ∈
(TopOpen‘ℂfld) |
66 | 65 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 𝑆 ∈
(TopOpen‘ℂfld)) |
67 | 2, 43, 44, 59, 61, 64, 62, 66 | dvmptres 24675 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ (1 − (i
· 𝑥)))) = (𝑥 ∈ 𝑆 ↦ -i)) |
68 | | fssres 6534 |
. . . . . . . . . . . . . 14
⊢
((log:(ℂ ∖ {0})⟶ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log
↾ 𝐷):𝐷⟶ran
log) |
69 | 36, 31, 68 | mp2an 691 |
. . . . . . . . . . . . 13
⊢ (log
↾ 𝐷):𝐷⟶ran log |
70 | 69 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ (log ↾ 𝐷):𝐷⟶ran log) |
71 | 70 | feqmptd 6726 |
. . . . . . . . . . 11
⊢ (⊤
→ (log ↾ 𝐷) =
(𝑦 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑦))) |
72 | | fvres 6682 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑦) = (log‘𝑦)) |
73 | 72 | mpteq2ia 5127 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑦)) = (𝑦 ∈ 𝐷 ↦ (log‘𝑦)) |
74 | 71, 73 | eqtr2di 2810 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑦 ∈ 𝐷 ↦ (log‘𝑦)) = (log ↾ 𝐷)) |
75 | 74 | oveq2d 7172 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑦 ∈
𝐷 ↦ (log‘𝑦))) = (ℂ D (log ↾
𝐷))) |
76 | 5 | dvlog 25354 |
. . . . . . . . 9
⊢ (ℂ
D (log ↾ 𝐷)) = (𝑦 ∈ 𝐷 ↦ (1 / 𝑦)) |
77 | 75, 76 | eqtrdi 2809 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑦 ∈
𝐷 ↦ (log‘𝑦))) = (𝑦 ∈ 𝐷 ↦ (1 / 𝑦))) |
78 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑦 = (1 − (i · 𝑥)) → (log‘𝑦) = (log‘(1 − (i
· 𝑥)))) |
79 | | oveq2 7164 |
. . . . . . . 8
⊢ (𝑦 = (1 − (i · 𝑥)) → (1 / 𝑦) = (1 / (1 − (i ·
𝑥)))) |
80 | 2, 2, 28, 30, 39, 40, 67, 77, 78, 79 | dvmptco 24684 |
. . . . . . 7
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ (log‘(1
− (i · 𝑥)))))
= (𝑥 ∈ 𝑆 ↦ ((1 / (1 − (i
· 𝑥))) ·
-i))) |
81 | | irec 13627 |
. . . . . . . . . 10
⊢ (1 / i) =
-i |
82 | 81 | oveq2i 7167 |
. . . . . . . . 9
⊢ ((1 / (1
− (i · 𝑥)))
· (1 / i)) = ((1 / (1 − (i · 𝑥))) · -i) |
83 | 4 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → i ∈
ℂ) |
84 | | ine0 11126 |
. . . . . . . . . . . 12
⊢ i ≠
0 |
85 | 84 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → i ≠
0) |
86 | 16, 83, 17, 85 | recdiv2d 11485 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 / (1
− (i · 𝑥))) /
i) = (1 / ((1 − (i · 𝑥)) · i))) |
87 | 16, 17 | reccld 11460 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 / (1
− (i · 𝑥)))
∈ ℂ) |
88 | 87, 83, 85 | divrecd 11470 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 / (1
− (i · 𝑥))) /
i) = ((1 / (1 − (i · 𝑥))) · (1 / i))) |
89 | | 1cnd 10687 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → 1 ∈
ℂ) |
90 | 89, 14, 83 | subdird 11148 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1
− (i · 𝑥))
· i) = ((1 · i) − ((i · 𝑥) · i))) |
91 | 4 | mulid2i 10697 |
. . . . . . . . . . . . . . 15
⊢ (1
· i) = i |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1
· i) = i) |
93 | 83, 12, 83 | mul32d 10901 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((i
· 𝑥) · i) =
((i · i) · 𝑥)) |
94 | | ixi 11320 |
. . . . . . . . . . . . . . . . 17
⊢ (i
· i) = -1 |
95 | 94 | oveq1i 7166 |
. . . . . . . . . . . . . . . 16
⊢ ((i
· i) · 𝑥) =
(-1 · 𝑥) |
96 | 12 | mulm1d 11143 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (-1
· 𝑥) = -𝑥) |
97 | 95, 96 | syl5eq 2805 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((i
· i) · 𝑥) =
-𝑥) |
98 | 93, 97 | eqtrd 2793 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((i
· 𝑥) · i) =
-𝑥) |
99 | 92, 98 | oveq12d 7174 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1
· i) − ((i · 𝑥) · i)) = (i − -𝑥)) |
100 | | subneg 10986 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ 𝑥
∈ ℂ) → (i − -𝑥) = (i + 𝑥)) |
101 | 4, 12, 100 | sylancr 590 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (i −
-𝑥) = (i + 𝑥)) |
102 | 90, 99, 101 | 3eqtrd 2797 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1
− (i · 𝑥))
· i) = (i + 𝑥)) |
103 | 83, 12, 102 | comraddd 10905 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1
− (i · 𝑥))
· i) = (𝑥 +
i)) |
104 | 103 | oveq2d 7172 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 / ((1
− (i · 𝑥))
· i)) = (1 / (𝑥 +
i))) |
105 | 86, 88, 104 | 3eqtr3d 2801 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 / (1
− (i · 𝑥)))
· (1 / i)) = (1 / (𝑥
+ i))) |
106 | 82, 105 | eqtr3id 2807 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 / (1
− (i · 𝑥)))
· -i) = (1 / (𝑥 +
i))) |
107 | 106 | mpteq2dva 5131 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈ 𝑆 ↦ ((1 / (1 − (i
· 𝑥))) · -i))
= (𝑥 ∈ 𝑆 ↦ (1 / (𝑥 + i)))) |
108 | 80, 107 | eqtrd 2793 |
. . . . . 6
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ (log‘(1
− (i · 𝑥)))))
= (𝑥 ∈ 𝑆 ↦ (1 / (𝑥 + i)))) |
109 | | ovexd 7191 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 /
(𝑥 − i)) ∈
V) |
110 | 26 | simp3bi 1144 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → (1 + (i · 𝑥)) ∈ 𝐷) |
111 | 110 | adantl 485 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 + (i
· 𝑥)) ∈ 𝐷) |
112 | 3, 42, 19 | sylancr 590 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (1 + (i · 𝑥)) ∈ ℂ) |
113 | 2, 45, 46, 48, 42, 49, 55 | dvmptadd 24672 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ (0 +
i))) |
114 | 4 | addid2i 10879 |
. . . . . . . . . . 11
⊢ (0 + i) =
i |
115 | 114 | mpteq2i 5128 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ ↦ (0 + i))
= (𝑥 ∈ ℂ ↦
i) |
116 | 113, 115 | eqtrdi 2809 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (1 + (i · 𝑥)))) = (𝑥 ∈ ℂ ↦ i)) |
117 | 2, 112, 49, 116, 61, 64, 62, 66 | dvmptres 24675 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ (1 + (i ·
𝑥)))) = (𝑥 ∈ 𝑆 ↦ i)) |
118 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑦 = (1 + (i · 𝑥)) → (log‘𝑦) = (log‘(1 + (i ·
𝑥)))) |
119 | | oveq2 7164 |
. . . . . . . 8
⊢ (𝑦 = (1 + (i · 𝑥)) → (1 / 𝑦) = (1 / (1 + (i · 𝑥)))) |
120 | 2, 2, 111, 83, 39, 40, 117, 77, 118, 119 | dvmptco 24684 |
. . . . . . 7
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ (log‘(1 +
(i · 𝑥))))) = (𝑥 ∈ 𝑆 ↦ ((1 / (1 + (i · 𝑥))) ·
i))) |
121 | 89, 20, 83, 21, 85 | divdiv2d 11499 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 / ((1 +
(i · 𝑥)) / i)) = ((1
· i) / (1 + (i · 𝑥)))) |
122 | 89, 14, 83, 85 | divdird 11505 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 + (i
· 𝑥)) / i) = ((1 /
i) + ((i · 𝑥) /
i))) |
123 | 81 | a1i 11 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 / i) =
-i) |
124 | 12, 83, 85 | divcan3d 11472 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((i
· 𝑥) / i) = 𝑥) |
125 | 123, 124 | oveq12d 7174 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 / i) +
((i · 𝑥) / i)) = (-i
+ 𝑥)) |
126 | | negicn 10938 |
. . . . . . . . . . . . 13
⊢ -i ∈
ℂ |
127 | | addcom 10877 |
. . . . . . . . . . . . 13
⊢ ((-i
∈ ℂ ∧ 𝑥
∈ ℂ) → (-i + 𝑥) = (𝑥 + -i)) |
128 | 126, 12, 127 | sylancr 590 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (-i +
𝑥) = (𝑥 + -i)) |
129 | | negsub 10985 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → (𝑥 + -i) =
(𝑥 −
i)) |
130 | 12, 4, 129 | sylancl 589 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 + -i) = (𝑥 − i)) |
131 | 128, 130 | eqtrd 2793 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (-i +
𝑥) = (𝑥 − i)) |
132 | 122, 125,
131 | 3eqtrd 2797 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 + (i
· 𝑥)) / i) = (𝑥 − i)) |
133 | 132 | oveq2d 7172 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 / ((1 +
(i · 𝑥)) / i)) = (1
/ (𝑥 −
i))) |
134 | 89, 83, 20, 21 | div23d 11504 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1
· i) / (1 + (i · 𝑥))) = ((1 / (1 + (i · 𝑥))) ·
i)) |
135 | 121, 133,
134 | 3eqtr3rd 2802 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 / (1 +
(i · 𝑥))) ·
i) = (1 / (𝑥 −
i))) |
136 | 135 | mpteq2dva 5131 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈ 𝑆 ↦ ((1 / (1 + (i ·
𝑥))) · i)) = (𝑥 ∈ 𝑆 ↦ (1 / (𝑥 − i)))) |
137 | 120, 136 | eqtrd 2793 |
. . . . . 6
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ (log‘(1 +
(i · 𝑥))))) = (𝑥 ∈ 𝑆 ↦ (1 / (𝑥 − i)))) |
138 | 2, 18, 25, 108, 22, 109, 137 | dvmptsub 24679 |
. . . . 5
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥)))))) = (𝑥 ∈ 𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i))))) |
139 | | subcl 10936 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → (𝑥 −
i) ∈ ℂ) |
140 | 12, 4, 139 | sylancl 589 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 − i) ∈
ℂ) |
141 | | addcl 10670 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → (𝑥 + i)
∈ ℂ) |
142 | 12, 4, 141 | sylancl 589 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 + i) ∈
ℂ) |
143 | 12 | sqcld 13571 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥↑2) ∈
ℂ) |
144 | | addcl 10670 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 + (𝑥↑2)) ∈
ℂ) |
145 | 3, 143, 144 | sylancr 590 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 +
(𝑥↑2)) ∈
ℂ) |
146 | | atandm4 25577 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ (1 +
(𝑥↑2)) ≠
0)) |
147 | 146 | simprbi 500 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom arctan → (1 +
(𝑥↑2)) ≠
0) |
148 | 9, 147 | syl 17 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 +
(𝑥↑2)) ≠
0) |
149 | 140, 142,
145, 148 | divsubdird 11506 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2))))) |
150 | 130 | oveq1d 7171 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 + -i) − (𝑥 + i)) = ((𝑥 − i) − (𝑥 + i))) |
151 | 126 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → -i ∈
ℂ) |
152 | 12, 151, 83 | pnpcand 11085 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 + -i) − (𝑥 + i)) = (-i −
i)) |
153 | 150, 152 | eqtr3d 2795 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) − (𝑥 + i)) = (-i −
i)) |
154 | | 2cn 11762 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
155 | 154, 4, 84 | divreci 11436 |
. . . . . . . . . . 11
⊢ (2 / i) =
(2 · (1 / i)) |
156 | 81 | oveq2i 7167 |
. . . . . . . . . . 11
⊢ (2
· (1 / i)) = (2 · -i) |
157 | 155, 156 | eqtri 2781 |
. . . . . . . . . 10
⊢ (2 / i) =
(2 · -i) |
158 | 126 | 2timesi 11825 |
. . . . . . . . . 10
⊢ (2
· -i) = (-i + -i) |
159 | 126, 4 | negsubi 11015 |
. . . . . . . . . 10
⊢ (-i + -i)
= (-i − i) |
160 | 157, 158,
159 | 3eqtri 2785 |
. . . . . . . . 9
⊢ (2 / i) =
(-i − i) |
161 | 153, 160 | eqtr4di 2811 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) − (𝑥 + i)) = (2 /
i)) |
162 | 161 | oveq1d 7171 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 − i) − (𝑥 + i)) / (1 + (𝑥↑2))) = ((2 / i) / (1 +
(𝑥↑2)))) |
163 | 140 | mulid1d 10709 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) · 1) = (𝑥 − i)) |
164 | 140, 142 | mulcomd 10713 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) · (𝑥 + i)) = ((𝑥 + i) · (𝑥 − i))) |
165 | | i2 13628 |
. . . . . . . . . . . . . 14
⊢
(i↑2) = -1 |
166 | 165 | oveq2i 7167 |
. . . . . . . . . . . . 13
⊢ ((𝑥↑2) − (i↑2)) =
((𝑥↑2) −
-1) |
167 | | subneg 10986 |
. . . . . . . . . . . . . 14
⊢ (((𝑥↑2) ∈ ℂ ∧ 1
∈ ℂ) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1)) |
168 | 143, 3, 167 | sylancl 589 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥↑2) − -1) = ((𝑥↑2) + 1)) |
169 | 166, 168 | syl5eq 2805 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥↑2) − (i↑2)) =
((𝑥↑2) +
1)) |
170 | | subsq 13635 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → ((𝑥↑2)
− (i↑2)) = ((𝑥 +
i) · (𝑥 −
i))) |
171 | 12, 4, 170 | sylancl 589 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥↑2) − (i↑2)) =
((𝑥 + i) · (𝑥 − i))) |
172 | | addcom 10877 |
. . . . . . . . . . . . 13
⊢ (((𝑥↑2) ∈ ℂ ∧ 1
∈ ℂ) → ((𝑥↑2) + 1) = (1 + (𝑥↑2))) |
173 | 143, 3, 172 | sylancl 589 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥↑2) + 1) = (1 + (𝑥↑2))) |
174 | 169, 171,
173 | 3eqtr3d 2801 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 + i) · (𝑥 − i)) = (1 + (𝑥↑2))) |
175 | 164, 174 | eqtrd 2793 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) · (𝑥 + i)) = (1 + (𝑥↑2))) |
176 | 163, 175 | oveq12d 7174 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 − i) · 1) /
((𝑥 − i) ·
(𝑥 + i))) = ((𝑥 − i) / (1 + (𝑥↑2)))) |
177 | | subneg 10986 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → (𝑥 −
-i) = (𝑥 +
i)) |
178 | 12, 4, 177 | sylancl 589 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 − -i) = (𝑥 + i)) |
179 | | atandm 25574 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ dom arctan ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i)) |
180 | 9, 179 | sylib 221 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ -i ∧ 𝑥 ≠ i)) |
181 | 180 | simp2d 1140 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → 𝑥 ≠ -i) |
182 | | subeq0 10963 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ -i ∈
ℂ) → ((𝑥 −
-i) = 0 ↔ 𝑥 =
-i)) |
183 | 182 | necon3bid 2995 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ -i ∈
ℂ) → ((𝑥 −
-i) ≠ 0 ↔ 𝑥 ≠
-i)) |
184 | 12, 126, 183 | sylancl 589 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − -i) ≠ 0 ↔ 𝑥 ≠ -i)) |
185 | 181, 184 | mpbird 260 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 − -i) ≠
0) |
186 | 178, 185 | eqnetrrd 3019 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 + i) ≠ 0) |
187 | 180 | simp3d 1141 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → 𝑥 ≠ i) |
188 | | subeq0 10963 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → ((𝑥 −
i) = 0 ↔ 𝑥 =
i)) |
189 | 188 | necon3bid 2995 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ i ∈
ℂ) → ((𝑥 −
i) ≠ 0 ↔ 𝑥 ≠
i)) |
190 | 12, 4, 189 | sylancl 589 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) ≠ 0 ↔ 𝑥 ≠ i)) |
191 | 187, 190 | mpbird 260 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (𝑥 − i) ≠
0) |
192 | 89, 142, 140, 186, 191 | divcan5d 11493 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 − i) · 1) /
((𝑥 − i) ·
(𝑥 + i))) = (1 / (𝑥 + i))) |
193 | 176, 192 | eqtr3d 2795 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 − i) / (1 + (𝑥↑2))) = (1 / (𝑥 + i))) |
194 | 142 | mulid1d 10709 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 + i) · 1) = (𝑥 + i)) |
195 | 194, 174 | oveq12d 7174 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = ((𝑥 + i) / (1 + (𝑥↑2)))) |
196 | 89, 140, 142, 191, 186 | divcan5d 11493 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 + i) · 1) / ((𝑥 + i) · (𝑥 − i))) = (1 / (𝑥 − i))) |
197 | 195, 196 | eqtr3d 2795 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((𝑥 + i) / (1 + (𝑥↑2))) = (1 / (𝑥 − i))) |
198 | 193, 197 | oveq12d 7174 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((𝑥 − i) / (1 + (𝑥↑2))) − ((𝑥 + i) / (1 + (𝑥↑2)))) = ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))) |
199 | 149, 162,
198 | 3eqtr3rd 2802 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → ((1 /
(𝑥 + i)) − (1 /
(𝑥 − i))) = ((2 / i)
/ (1 + (𝑥↑2)))) |
200 | 199 | mpteq2dva 5131 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈ 𝑆 ↦ ((1 / (𝑥 + i)) − (1 / (𝑥 − i)))) = (𝑥 ∈ 𝑆 ↦ ((2 / i) / (1 + (𝑥↑2))))) |
201 | 138, 200 | eqtrd 2793 |
. . . 4
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥)))))) = (𝑥 ∈ 𝑆 ↦ ((2 / i) / (1 + (𝑥↑2))))) |
202 | | halfcl 11912 |
. . . . 5
⊢ (i ∈
ℂ → (i / 2) ∈ ℂ) |
203 | 4, 202 | mp1i 13 |
. . . 4
⊢ (⊤
→ (i / 2) ∈ ℂ) |
204 | 2, 23, 24, 201, 203 | dvmptcmul 24676 |
. . 3
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝑆 ↦ ((i / 2) ·
((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))) = (𝑥 ∈ 𝑆 ↦ ((i / 2) · ((2 / i) / (1 +
(𝑥↑2)))))) |
205 | | df-atan 25565 |
. . . . . . 7
⊢ arctan =
(𝑥 ∈ (ℂ ∖
{-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i
· 𝑥)))))) |
206 | 205 | reseq1i 5824 |
. . . . . 6
⊢ (arctan
↾ 𝑆) = ((𝑥 ∈ (ℂ ∖ {-i,
i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i
· 𝑥)))))) ↾
𝑆) |
207 | | atanf 25578 |
. . . . . . . . 9
⊢
arctan:(ℂ ∖ {-i, i})⟶ℂ |
208 | 207 | fdmi 6514 |
. . . . . . . 8
⊢ dom
arctan = (ℂ ∖ {-i, i}) |
209 | 7, 208 | sseqtri 3930 |
. . . . . . 7
⊢ 𝑆 ⊆ (ℂ ∖ {-i,
i}) |
210 | | resmpt 5882 |
. . . . . . 7
⊢ (𝑆 ⊆ (ℂ ∖ {-i,
i}) → ((𝑥 ∈
(ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i
· 𝑥))) −
(log‘(1 + (i · 𝑥)))))) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((i / 2) · ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥))))))) |
211 | 209, 210 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ (ℂ ∖ {-i,
i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i
· 𝑥)))))) ↾
𝑆) = (𝑥 ∈ 𝑆 ↦ ((i / 2) · ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥)))))) |
212 | 206, 211 | eqtri 2781 |
. . . . 5
⊢ (arctan
↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((i / 2) · ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥)))))) |
213 | 212 | a1i 11 |
. . . 4
⊢ (⊤
→ (arctan ↾ 𝑆) =
(𝑥 ∈ 𝑆 ↦ ((i / 2) · ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥))))))) |
214 | 213 | oveq2d 7172 |
. . 3
⊢ (⊤
→ (ℂ D (arctan ↾ 𝑆)) = (ℂ D (𝑥 ∈ 𝑆 ↦ ((i / 2) · ((log‘(1
− (i · 𝑥)))
− (log‘(1 + (i · 𝑥)))))))) |
215 | | 2ne0 11791 |
. . . . . . 7
⊢ 2 ≠
0 |
216 | | divcan6 11398 |
. . . . . . 7
⊢ (((i
∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
((i / 2) · (2 / i)) = 1) |
217 | 4, 84, 154, 215, 216 | mp4an 692 |
. . . . . 6
⊢ ((i / 2)
· (2 / i)) = 1 |
218 | 217 | oveq1i 7166 |
. . . . 5
⊢ (((i / 2)
· (2 / i)) / (1 + (𝑥↑2))) = (1 / (1 + (𝑥↑2))) |
219 | 4, 202 | mp1i 13 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (i / 2)
∈ ℂ) |
220 | 154, 4, 84 | divcli 11433 |
. . . . . . 7
⊢ (2 / i)
∈ ℂ |
221 | 220 | a1i 11 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (2 / i)
∈ ℂ) |
222 | 219, 221,
145, 148 | divassd 11502 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (((i / 2)
· (2 / i)) / (1 + (𝑥↑2))) = ((i / 2) · ((2 / i) / (1
+ (𝑥↑2))))) |
223 | 218, 222 | eqtr3id 2807 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝑆) → (1 / (1 +
(𝑥↑2))) = ((i / 2)
· ((2 / i) / (1 + (𝑥↑2))))) |
224 | 223 | mpteq2dva 5131 |
. . 3
⊢ (⊤
→ (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) = (𝑥 ∈ 𝑆 ↦ ((i / 2) · ((2 / i) / (1 +
(𝑥↑2)))))) |
225 | 204, 214,
224 | 3eqtr4d 2803 |
. 2
⊢ (⊤
→ (ℂ D (arctan ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2))))) |
226 | 225 | mptru 1545 |
1
⊢ (ℂ
D (arctan ↾ 𝑆)) =
(𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) |