| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmop0 | Structured version Visualization version GIF version | ||
| Description: The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmop0 | ⊢ (normop‘ 0hop ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f 31664 | . . 3 ⊢ 0hop : ℋ⟶ ℋ | |
| 2 | nmopval 31769 | . . 3 ⊢ ( 0hop : ℋ⟶ ℋ → (normop‘ 0hop ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))}, ℝ*, < )) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (normop‘ 0hop ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))}, ℝ*, < ) |
| 4 | ho0val 31663 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → ( 0hop ‘𝑦) = 0ℎ) | |
| 5 | 4 | fveq2d 6876 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (normℎ‘( 0hop ‘𝑦)) = (normℎ‘0ℎ)) |
| 6 | norm0 31041 | . . . . . . . . . 10 ⊢ (normℎ‘0ℎ) = 0 | |
| 7 | 5, 6 | eqtrdi 2785 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (normℎ‘( 0hop ‘𝑦)) = 0) |
| 8 | 7 | eqeq2d 2745 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (normℎ‘( 0hop ‘𝑦)) ↔ 𝑥 = 0)) |
| 9 | 8 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
| 10 | 9 | rexbiia 3080 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
| 11 | ax-hv0cl 30916 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
| 12 | 0le1 11752 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 13 | fveq2 6872 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
| 14 | 13, 6 | eqtrdi 2785 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
| 15 | 14 | breq1d 5126 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
| 16 | 15 | rspcev 3599 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
| 17 | 11, 12, 16 | mp2an 692 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
| 18 | r19.41v 3172 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
| 19 | 17, 18 | mpbiran 709 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
| 20 | 10, 19 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦))) ↔ 𝑥 = 0) |
| 21 | 20 | abbii 2801 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
| 22 | df-sn 4600 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
| 23 | 21, 22 | eqtr4i 2760 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))} = {0} |
| 24 | 23 | supeq1i 9453 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
| 25 | xrltso 13149 | . . 3 ⊢ < Or ℝ* | |
| 26 | 0xr 11274 | . . 3 ⊢ 0 ∈ ℝ* | |
| 27 | supsn 9478 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 28 | 25, 26, 27 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 29 | 3, 24, 28 | 3eqtri 2761 | 1 ⊢ (normop‘ 0hop ) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 {csn 4599 class class class wbr 5116 Or wor 5557 ⟶wf 6523 ‘cfv 6527 supcsup 9446 0cc0 11121 1c1 11122 ℝ*cxr 11260 < clt 11261 ≤ cle 11262 ℋchba 30832 normℎcno 30836 0ℎc0v 30837 0hop ch0o 30856 normopcnop 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cc 10441 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 ax-mulf 11201 ax-hilex 30912 ax-hfvadd 30913 ax-hvcom 30914 ax-hvass 30915 ax-hv0cl 30916 ax-hvaddid 30917 ax-hfvmul 30918 ax-hvmulid 30919 ax-hvmulass 30920 ax-hvdistr1 30921 ax-hvdistr2 30922 ax-hvmul0 30923 ax-hfi 30992 ax-his1 30995 ax-his2 30996 ax-his3 30997 ax-his4 30998 ax-hcompl 31115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-omul 8479 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-acn 9948 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ico 13359 df-icc 13360 df-fz 13514 df-fzo 13661 df-fl 13798 df-seq 14009 df-exp 14069 df-hash 14337 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-clim 15491 df-rlim 15492 df-sum 15690 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-rest 17421 df-topn 17422 df-0g 17440 df-gsum 17441 df-topgen 17442 df-pt 17443 df-prds 17446 df-xrs 17501 df-qtop 17506 df-imas 17507 df-xps 17509 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-mulg 19036 df-cntz 19285 df-cmn 19748 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cld 22942 df-ntr 22943 df-cls 22944 df-nei 23021 df-cn 23150 df-cnp 23151 df-lm 23152 df-haus 23238 df-tx 23485 df-hmeo 23678 df-fil 23769 df-fm 23861 df-flim 23862 df-flf 23863 df-xms 24244 df-ms 24245 df-tms 24246 df-cfil 25192 df-cau 25193 df-cmet 25194 df-grpo 30406 df-gid 30407 df-ginv 30408 df-gdiv 30409 df-ablo 30458 df-vc 30472 df-nv 30505 df-va 30508 df-ba 30509 df-sm 30510 df-0v 30511 df-vs 30512 df-nmcv 30513 df-ims 30514 df-dip 30614 df-ssp 30635 df-ph 30726 df-cbn 30776 df-hnorm 30881 df-hba 30882 df-hvsub 30884 df-hlim 30885 df-hcau 30886 df-sh 31120 df-ch 31134 df-oc 31165 df-ch0 31166 df-shs 31221 df-pjh 31308 df-h0op 31661 df-nmop 31752 |
| This theorem is referenced by: nmop0h 31904 0bdop 31906 nmlnop0iALT 31908 pjbdlni 32062 |
| Copyright terms: Public domain | W3C validator |