![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmop0 | Structured version Visualization version GIF version |
Description: The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmop0 | ⊢ (normop‘ 0hop ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0f 31473 | . . 3 ⊢ 0hop : ℋ⟶ ℋ | |
2 | nmopval 31578 | . . 3 ⊢ ( 0hop : ℋ⟶ ℋ → (normop‘ 0hop ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))}, ℝ*, < )) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (normop‘ 0hop ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))}, ℝ*, < ) |
4 | ho0val 31472 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → ( 0hop ‘𝑦) = 0ℎ) | |
5 | 4 | fveq2d 6885 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (normℎ‘( 0hop ‘𝑦)) = (normℎ‘0ℎ)) |
6 | norm0 30850 | . . . . . . . . . 10 ⊢ (normℎ‘0ℎ) = 0 | |
7 | 5, 6 | eqtrdi 2780 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (normℎ‘( 0hop ‘𝑦)) = 0) |
8 | 7 | eqeq2d 2735 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (normℎ‘( 0hop ‘𝑦)) ↔ 𝑥 = 0)) |
9 | 8 | anbi2d 628 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
10 | 9 | rexbiia 3084 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
11 | ax-hv0cl 30725 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
12 | 0le1 11734 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
13 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
14 | 13, 6 | eqtrdi 2780 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
15 | 14 | breq1d 5148 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
16 | 15 | rspcev 3604 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
17 | 11, 12, 16 | mp2an 689 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
18 | r19.41v 3180 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
19 | 17, 18 | mpbiran 706 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
20 | 10, 19 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦))) ↔ 𝑥 = 0) |
21 | 20 | abbii 2794 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
22 | df-sn 4621 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
23 | 21, 22 | eqtr4i 2755 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))} = {0} |
24 | 23 | supeq1i 9438 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘( 0hop ‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
25 | xrltso 13117 | . . 3 ⊢ < Or ℝ* | |
26 | 0xr 11258 | . . 3 ⊢ 0 ∈ ℝ* | |
27 | supsn 9463 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
28 | 25, 26, 27 | mp2an 689 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
29 | 3, 24, 28 | 3eqtri 2756 | 1 ⊢ (normop‘ 0hop ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 ∃wrex 3062 {csn 4620 class class class wbr 5138 Or wor 5577 ⟶wf 6529 ‘cfv 6533 supcsup 9431 0cc0 11106 1c1 11107 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 ℋchba 30641 normℎcno 30645 0ℎc0v 30646 0hop ch0o 30665 normopcnop 30667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30721 ax-hfvadd 30722 ax-hvcom 30723 ax-hvass 30724 ax-hv0cl 30725 ax-hvaddid 30726 ax-hfvmul 30727 ax-hvmulid 30728 ax-hvmulass 30729 ax-hvdistr1 30730 ax-hvdistr2 30731 ax-hvmul0 30732 ax-hfi 30801 ax-his1 30804 ax-his2 30805 ax-his3 30806 ax-his4 30807 ax-hcompl 30924 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-fbas 21225 df-fg 21226 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cld 22845 df-ntr 22846 df-cls 22847 df-nei 22924 df-cn 23053 df-cnp 23054 df-lm 23055 df-haus 23141 df-tx 23388 df-hmeo 23581 df-fil 23672 df-fm 23764 df-flim 23765 df-flf 23766 df-xms 24148 df-ms 24149 df-tms 24150 df-cfil 25105 df-cau 25106 df-cmet 25107 df-grpo 30215 df-gid 30216 df-ginv 30217 df-gdiv 30218 df-ablo 30267 df-vc 30281 df-nv 30314 df-va 30317 df-ba 30318 df-sm 30319 df-0v 30320 df-vs 30321 df-nmcv 30322 df-ims 30323 df-dip 30423 df-ssp 30444 df-ph 30535 df-cbn 30585 df-hnorm 30690 df-hba 30691 df-hvsub 30693 df-hlim 30694 df-hcau 30695 df-sh 30929 df-ch 30943 df-oc 30974 df-ch0 30975 df-shs 31030 df-pjh 31117 df-h0op 31470 df-nmop 31561 |
This theorem is referenced by: nmop0h 31713 0bdop 31715 nmlnop0iALT 31717 pjbdlni 31871 |
Copyright terms: Public domain | W3C validator |