| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > helch | Structured version Visualization version GIF version | ||
| Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| helch | ⊢ ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 4006 | . . . 4 ⊢ ℋ ⊆ ℋ | |
| 2 | ax-hv0cl 31022 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) |
| 4 | hvaddcl 31031 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
| 5 | 4 | rgen2 3199 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ |
| 6 | hvmulcl 31032 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 7 | 6 | rgen2 3199 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ |
| 8 | 5, 7 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ) |
| 9 | issh2 31228 | . . 3 ⊢ ( ℋ ∈ Sℋ ↔ (( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ))) | |
| 10 | 3, 8, 9 | mpbir2an 711 | . 2 ⊢ ℋ ∈ Sℋ |
| 11 | vex 3484 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | hlimveci 31209 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 14 | 13 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 15 | isch2 31242 | . 2 ⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ))) | |
| 16 | 10, 14, 15 | mpbir2an 711 | 1 ⊢ ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 ⟶wf 6557 (class class class)co 7431 ℂcc 11153 ℕcn 12266 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 0ℎc0v 30943 ⇝𝑣 chli 30946 Sℋ csh 30947 Cℋ cch 30948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 ax-hilex 31018 ax-hfvadd 31019 ax-hv0cl 31022 ax-hfvmul 31024 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-map 8868 df-nn 12267 df-hlim 30991 df-sh 31226 df-ch 31240 |
| This theorem is referenced by: ifchhv 31263 helsh 31264 ococin 31427 chj1i 31508 hne0 31566 pjch1 31689 pjo 31690 pjsslem 31698 ho0val 31769 dfiop2 31772 hoid1i 31808 hoid1ri 31809 pjtoi 32198 pjoci 32199 pjclem3 32216 hst0 32252 st0 32268 strlem3a 32271 hstrlem3a 32279 stcltr2i 32294 |
| Copyright terms: Public domain | W3C validator |