| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > helch | Structured version Visualization version GIF version | ||
| Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| helch | ⊢ ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . . . 4 ⊢ ℋ ⊆ ℋ | |
| 2 | ax-hv0cl 30985 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) |
| 4 | hvaddcl 30994 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
| 5 | 4 | rgen2 3173 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ |
| 6 | hvmulcl 30995 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 7 | 6 | rgen2 3173 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ |
| 8 | 5, 7 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ) |
| 9 | issh2 31191 | . . 3 ⊢ ( ℋ ∈ Sℋ ↔ (( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ))) | |
| 10 | 3, 8, 9 | mpbir2an 711 | . 2 ⊢ ℋ ∈ Sℋ |
| 11 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | hlimveci 31172 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 14 | 13 | gen2 1797 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 15 | isch2 31205 | . 2 ⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ))) | |
| 16 | 10, 14, 15 | mpbir2an 711 | 1 ⊢ ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 class class class wbr 5093 ⟶wf 6482 (class class class)co 7352 ℂcc 11011 ℕcn 12132 ℋchba 30901 +ℎ cva 30902 ·ℎ csm 30903 0ℎc0v 30906 ⇝𝑣 chli 30909 Sℋ csh 30910 Cℋ cch 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 ax-hilex 30981 ax-hfvadd 30982 ax-hv0cl 30985 ax-hfvmul 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-map 8758 df-nn 12133 df-hlim 30954 df-sh 31189 df-ch 31203 |
| This theorem is referenced by: ifchhv 31226 helsh 31227 ococin 31390 chj1i 31471 hne0 31529 pjch1 31652 pjo 31653 pjsslem 31661 ho0val 31732 dfiop2 31735 hoid1i 31771 hoid1ri 31772 pjtoi 32161 pjoci 32162 pjclem3 32179 hst0 32215 st0 32231 strlem3a 32234 hstrlem3a 32242 stcltr2i 32257 |
| Copyright terms: Public domain | W3C validator |