| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > helch | Structured version Visualization version GIF version | ||
| Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| helch | ⊢ ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . . . 4 ⊢ ℋ ⊆ ℋ | |
| 2 | ax-hv0cl 30939 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) |
| 4 | hvaddcl 30948 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
| 5 | 4 | rgen2 3178 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ |
| 6 | hvmulcl 30949 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 7 | 6 | rgen2 3178 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ |
| 8 | 5, 7 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ) |
| 9 | issh2 31145 | . . 3 ⊢ ( ℋ ∈ Sℋ ↔ (( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ))) | |
| 10 | 3, 8, 9 | mpbir2an 711 | . 2 ⊢ ℋ ∈ Sℋ |
| 11 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | hlimveci 31126 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 14 | 13 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 15 | isch2 31159 | . 2 ⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ))) | |
| 16 | 10, 14, 15 | mpbir2an 711 | 1 ⊢ ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 class class class wbr 5110 ⟶wf 6510 (class class class)co 7390 ℂcc 11073 ℕcn 12193 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 ⇝𝑣 chli 30863 Sℋ csh 30864 Cℋ cch 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-nn 12194 df-hlim 30908 df-sh 31143 df-ch 31157 |
| This theorem is referenced by: ifchhv 31180 helsh 31181 ococin 31344 chj1i 31425 hne0 31483 pjch1 31606 pjo 31607 pjsslem 31615 ho0val 31686 dfiop2 31689 hoid1i 31725 hoid1ri 31726 pjtoi 32115 pjoci 32116 pjclem3 32133 hst0 32169 st0 32185 strlem3a 32188 hstrlem3a 32196 stcltr2i 32211 |
| Copyright terms: Public domain | W3C validator |