Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > helch | Structured version Visualization version GIF version |
Description: The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
helch | ⊢ ℋ ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3953 | . . . 4 ⊢ ℋ ⊆ ℋ | |
2 | ax-hv0cl 29566 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
3 | 1, 2 | pm3.2i 471 | . . 3 ⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) |
4 | hvaddcl 29575 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
5 | 4 | rgen2 3190 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ |
6 | hvmulcl 29576 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
7 | 6 | rgen2 3190 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ |
8 | 5, 7 | pm3.2i 471 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ) |
9 | issh2 29772 | . . 3 ⊢ ( ℋ ∈ Sℋ ↔ (( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ))) | |
10 | 3, 8, 9 | mpbir2an 708 | . 2 ⊢ ℋ ∈ Sℋ |
11 | vex 3445 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | hlimveci 29753 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
14 | 13 | gen2 1797 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
15 | isch2 29786 | . 2 ⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ))) | |
16 | 10, 14, 15 | mpbir2an 708 | 1 ⊢ ℋ ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1538 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3897 class class class wbr 5089 ⟶wf 6469 (class class class)co 7329 ℂcc 10962 ℕcn 12066 ℋchba 29482 +ℎ cva 29483 ·ℎ csm 29484 0ℎc0v 29487 ⇝𝑣 chli 29490 Sℋ csh 29491 Cℋ cch 29492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-1cn 11022 ax-addcl 11024 ax-hilex 29562 ax-hfvadd 29563 ax-hv0cl 29566 ax-hfvmul 29568 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-map 8680 df-nn 12067 df-hlim 29535 df-sh 29770 df-ch 29784 |
This theorem is referenced by: ifchhv 29807 helsh 29808 ococin 29971 chj1i 30052 hne0 30110 pjch1 30233 pjo 30234 pjsslem 30242 ho0val 30313 dfiop2 30316 hoid1i 30352 hoid1ri 30353 pjtoi 30742 pjoci 30743 pjclem3 30760 hst0 30796 st0 30812 strlem3a 30815 hstrlem3a 30823 stcltr2i 30838 |
Copyright terms: Public domain | W3C validator |