| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > helch | Structured version Visualization version GIF version | ||
| Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| helch | ⊢ ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . . . 4 ⊢ ℋ ⊆ ℋ | |
| 2 | ax-hv0cl 30984 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) |
| 4 | hvaddcl 30993 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
| 5 | 4 | rgen2 3184 | . . . 4 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ |
| 6 | hvmulcl 30994 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
| 7 | 6 | rgen2 3184 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ |
| 8 | 5, 7 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ) |
| 9 | issh2 31190 | . . 3 ⊢ ( ℋ ∈ Sℋ ↔ (( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ 𝑦) ∈ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ (𝑥 ·ℎ 𝑦) ∈ ℋ))) | |
| 10 | 3, 8, 9 | mpbir2an 711 | . 2 ⊢ ℋ ∈ Sℋ |
| 11 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | hlimveci 31171 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 14 | 13 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
| 15 | isch2 31204 | . 2 ⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ))) | |
| 16 | 10, 14, 15 | mpbir2an 711 | 1 ⊢ ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 class class class wbr 5119 ⟶wf 6527 (class class class)co 7405 ℂcc 11127 ℕcn 12240 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 0ℎc0v 30905 ⇝𝑣 chli 30908 Sℋ csh 30909 Cℋ cch 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 ax-hilex 30980 ax-hfvadd 30981 ax-hv0cl 30984 ax-hfvmul 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8842 df-nn 12241 df-hlim 30953 df-sh 31188 df-ch 31202 |
| This theorem is referenced by: ifchhv 31225 helsh 31226 ococin 31389 chj1i 31470 hne0 31528 pjch1 31651 pjo 31652 pjsslem 31660 ho0val 31731 dfiop2 31734 hoid1i 31770 hoid1ri 31771 pjtoi 32160 pjoci 32161 pjclem3 32178 hst0 32214 st0 32230 strlem3a 32233 hstrlem3a 32241 stcltr2i 32256 |
| Copyright terms: Public domain | W3C validator |