HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopsetn0 Structured version   Visualization version   GIF version

Theorem nmopsetn0 29652
Description: The set in the supremum of the operator norm definition df-nmop 29626 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopsetn0 (norm‘(𝑇‘0)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem nmopsetn0
StepHypRef Expression
1 ax-hv0cl 28790 . . 3 0 ∈ ℋ
2 norm0 28915 . . . . 5 (norm‘0) = 0
3 0le1 11156 . . . . 5 0 ≤ 1
42, 3eqbrtri 5054 . . . 4 (norm‘0) ≤ 1
5 eqid 2801 . . . 4 (norm‘(𝑇‘0)) = (norm‘(𝑇‘0))
64, 5pm3.2i 474 . . 3 ((norm‘0) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇‘0)))
7 fveq2 6649 . . . . . 6 (𝑦 = 0 → (norm𝑦) = (norm‘0))
87breq1d 5043 . . . . 5 (𝑦 = 0 → ((norm𝑦) ≤ 1 ↔ (norm‘0) ≤ 1))
9 2fveq3 6654 . . . . . 6 (𝑦 = 0 → (norm‘(𝑇𝑦)) = (norm‘(𝑇‘0)))
109eqeq2d 2812 . . . . 5 (𝑦 = 0 → ((norm‘(𝑇‘0)) = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇‘0)) = (norm‘(𝑇‘0))))
118, 10anbi12d 633 . . . 4 (𝑦 = 0 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦))) ↔ ((norm‘0) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇‘0)))))
1211rspcev 3574 . . 3 ((0 ∈ ℋ ∧ ((norm‘0) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇‘0)))) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦))))
131, 6, 12mp2an 691 . 2 𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦)))
14 fvex 6662 . . 3 (norm‘(𝑇‘0)) ∈ V
15 eqeq1 2805 . . . . 5 (𝑥 = (norm‘(𝑇‘0)) → (𝑥 = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦))))
1615anbi2d 631 . . . 4 (𝑥 = (norm‘(𝑇‘0)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦)))))
1716rexbidv 3259 . . 3 (𝑥 = (norm‘(𝑇‘0)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦)))))
1814, 17elab 3618 . 2 ((norm‘(𝑇‘0)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇‘0)) = (norm‘(𝑇𝑦))))
1913, 18mpbir 234 1 (norm‘(𝑇‘0)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2112  {cab 2779  wrex 3110   class class class wbr 5033  cfv 6328  0cc0 10530  1c1 10531  cle 10669  chba 28706  normcno 28710  0c0v 28711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-hv0cl 28790  ax-hvmul0 28797  ax-hfi 28866  ax-his3 28871
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-hnorm 28755
This theorem is referenced by:  nmoprepnf  29654
  Copyright terms: Public domain W3C validator