![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopsetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmop 30823 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopsetn0 | ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29987 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | norm0 30112 | . . . . 5 ⊢ (normℎ‘0ℎ) = 0 | |
3 | 0le1 11683 | . . . . 5 ⊢ 0 ≤ 1 | |
4 | 2, 3 | eqbrtri 5127 | . . . 4 ⊢ (normℎ‘0ℎ) ≤ 1 |
5 | eqid 2733 | . . . 4 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)) | |
6 | 4, 5 | pm3.2i 472 | . . 3 ⊢ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ))) |
7 | fveq2 6843 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
8 | 7 | breq1d 5116 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘0ℎ) ≤ 1)) |
9 | 2fveq3 6848 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘(𝑇‘𝑦)) = (normℎ‘(𝑇‘0ℎ))) | |
10 | 9 | eqeq2d 2744 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)))) |
11 | 8, 10 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 0ℎ → (((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ))))) |
12 | 11 | rspcev 3580 | . . 3 ⊢ ((0ℎ ∈ ℋ ∧ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)))) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) |
13 | 1, 6, 12 | mp2an 691 | . 2 ⊢ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))) |
14 | fvex 6856 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ V | |
15 | eqeq1 2737 | . . . . 5 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) | |
16 | 15 | anbi2d 630 | . . . 4 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3172 | . . 3 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3631 | . 2 ⊢ ((normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) |
19 | 13, 18 | mpbir 230 | 1 ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∃wrex 3070 class class class wbr 5106 ‘cfv 6497 0cc0 11056 1c1 11057 ≤ cle 11195 ℋchba 29903 normℎcno 29907 0ℎc0v 29908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-hv0cl 29987 ax-hvmul0 29994 ax-hfi 30063 ax-his3 30068 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-hnorm 29952 |
This theorem is referenced by: nmoprepnf 30851 |
Copyright terms: Public domain | W3C validator |