Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopsetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmop 30489 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopsetn0 | ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29653 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | norm0 29778 | . . . . 5 ⊢ (normℎ‘0ℎ) = 0 | |
3 | 0le1 11599 | . . . . 5 ⊢ 0 ≤ 1 | |
4 | 2, 3 | eqbrtri 5113 | . . . 4 ⊢ (normℎ‘0ℎ) ≤ 1 |
5 | eqid 2736 | . . . 4 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)) | |
6 | 4, 5 | pm3.2i 471 | . . 3 ⊢ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ))) |
7 | fveq2 6825 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
8 | 7 | breq1d 5102 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘0ℎ) ≤ 1)) |
9 | 2fveq3 6830 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘(𝑇‘𝑦)) = (normℎ‘(𝑇‘0ℎ))) | |
10 | 9 | eqeq2d 2747 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)))) |
11 | 8, 10 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 0ℎ → (((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ))))) |
12 | 11 | rspcev 3570 | . . 3 ⊢ ((0ℎ ∈ ℋ ∧ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)))) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) |
13 | 1, 6, 12 | mp2an 689 | . 2 ⊢ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))) |
14 | fvex 6838 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ V | |
15 | eqeq1 2740 | . . . . 5 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) | |
16 | 15 | anbi2d 629 | . . . 4 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3171 | . . 3 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3619 | . 2 ⊢ ((normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) |
19 | 13, 18 | mpbir 230 | 1 ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ∃wrex 3070 class class class wbr 5092 ‘cfv 6479 0cc0 10972 1c1 10973 ≤ cle 11111 ℋchba 29569 normℎcno 29573 0ℎc0v 29574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-hv0cl 29653 ax-hvmul0 29660 ax-hfi 29729 ax-his3 29734 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-hnorm 29618 |
This theorem is referenced by: nmoprepnf 30517 |
Copyright terms: Public domain | W3C validator |