Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopsetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmop 30229 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopsetn0 | ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29393 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | norm0 29518 | . . . . 5 ⊢ (normℎ‘0ℎ) = 0 | |
3 | 0le1 11526 | . . . . 5 ⊢ 0 ≤ 1 | |
4 | 2, 3 | eqbrtri 5098 | . . . 4 ⊢ (normℎ‘0ℎ) ≤ 1 |
5 | eqid 2733 | . . . 4 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)) | |
6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ))) |
7 | fveq2 6792 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
8 | 7 | breq1d 5087 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘0ℎ) ≤ 1)) |
9 | 2fveq3 6797 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘(𝑇‘𝑦)) = (normℎ‘(𝑇‘0ℎ))) | |
10 | 9 | eqeq2d 2744 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)))) |
11 | 8, 10 | anbi12d 630 | . . . 4 ⊢ (𝑦 = 0ℎ → (((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ))))) |
12 | 11 | rspcev 3563 | . . 3 ⊢ ((0ℎ ∈ ℋ ∧ ((normℎ‘0ℎ) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘0ℎ)))) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) |
13 | 1, 6, 12 | mp2an 688 | . 2 ⊢ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))) |
14 | fvex 6805 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ V | |
15 | eqeq1 2737 | . . . . 5 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) | |
16 | 15 | anbi2d 628 | . . . 4 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3169 | . . 3 ⊢ (𝑥 = (normℎ‘(𝑇‘0ℎ)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3611 | . 2 ⊢ ((normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘(𝑇‘𝑦)))) |
19 | 13, 18 | mpbir 230 | 1 ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2101 {cab 2710 ∃wrex 3068 class class class wbr 5077 ‘cfv 6447 0cc0 10899 1c1 10900 ≤ cle 11038 ℋchba 29309 normℎcno 29313 0ℎc0v 29314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-hv0cl 29393 ax-hvmul0 29400 ax-hfi 29469 ax-his3 29474 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-hnorm 29358 |
This theorem is referenced by: nmoprepnf 30257 |
Copyright terms: Public domain | W3C validator |