Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmfn0 | Structured version Visualization version GIF version |
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfn0 | ⊢ (normfn‘( ℋ × {0})) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lnfn 30356 | . . 3 ⊢ ( ℋ × {0}) ∈ LinFn | |
2 | lnfnf 30255 | . . 3 ⊢ (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ) | |
3 | nmfnval 30247 | . . 3 ⊢ (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) |
5 | c0ex 10980 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
6 | 5 | fvconst2 7076 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
7 | 6 | fveq2d 6775 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0)) |
8 | abs0 15008 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
9 | 7, 8 | eqtrdi 2796 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0) |
10 | 9 | eqeq2d 2751 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0)) |
11 | 10 | anbi2d 629 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
12 | 11 | rexbiia 3179 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
13 | ax-hv0cl 29374 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
14 | 0le1 11509 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
15 | fveq2 6771 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
16 | norm0 29499 | . . . . . . . . . . 11 ⊢ (normℎ‘0ℎ) = 0 | |
17 | 15, 16 | eqtrdi 2796 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
18 | 17 | breq1d 5089 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
19 | 18 | rspcev 3561 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
20 | 13, 14, 19 | mp2an 689 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
21 | r19.41v 3276 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
22 | 20, 21 | mpbiran 706 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
23 | 12, 22 | bitri 274 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0) |
24 | 23 | abbii 2810 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
25 | df-sn 4568 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
26 | 24, 25 | eqtr4i 2771 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0} |
27 | 26 | supeq1i 9194 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
28 | xrltso 12886 | . . 3 ⊢ < Or ℝ* | |
29 | 0xr 11033 | . . 3 ⊢ 0 ∈ ℝ* | |
30 | supsn 9219 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
31 | 28, 29, 30 | mp2an 689 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
32 | 4, 27, 31 | 3eqtri 2772 | 1 ⊢ (normfn‘( ℋ × {0})) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 {cab 2717 ∃wrex 3067 {csn 4567 class class class wbr 5079 Or wor 5503 × cxp 5588 ⟶wf 6428 ‘cfv 6432 supcsup 9187 ℂcc 10880 0cc0 10882 1c1 10883 ℝ*cxr 11019 < clt 11020 ≤ cle 11021 abscabs 14956 ℋchba 29290 normℎcno 29294 0ℎc0v 29295 normfncnmf 29322 LinFnclf 29325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-hilex 29370 ax-hfvadd 29371 ax-hv0cl 29374 ax-hfvmul 29376 ax-hvmul0 29381 ax-hfi 29450 ax-his3 29455 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-map 8609 df-en 8726 df-dom 8727 df-sdom 8728 df-sup 9189 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-n0 12245 df-z 12331 df-uz 12594 df-rp 12742 df-seq 13733 df-exp 13794 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-hnorm 29339 df-nmfn 30216 df-lnfn 30219 |
This theorem is referenced by: nmbdfnlb 30421 branmfn 30476 |
Copyright terms: Public domain | W3C validator |