HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfn0 Structured version   Visualization version   GIF version

Theorem nmfn0 30358
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfn0 (normfn‘( ℋ × {0})) = 0

Proof of Theorem nmfn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lnfn 30356 . . 3 ( ℋ × {0}) ∈ LinFn
2 lnfnf 30255 . . 3 (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ)
3 nmfnval 30247 . . 3 (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ))
41, 2, 3mp2b 10 . 2 (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )
5 c0ex 10980 . . . . . . . . . . . 12 0 ∈ V
65fvconst2 7076 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0)
76fveq2d 6775 . . . . . . . . . 10 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0))
8 abs0 15008 . . . . . . . . . 10 (abs‘0) = 0
97, 8eqtrdi 2796 . . . . . . . . 9 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0)
109eqeq2d 2751 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0))
1110anbi2d 629 . . . . . . 7 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0)))
1211rexbiia 3179 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0))
13 ax-hv0cl 29374 . . . . . . . 8 0 ∈ ℋ
14 0le1 11509 . . . . . . . 8 0 ≤ 1
15 fveq2 6771 . . . . . . . . . . 11 (𝑦 = 0 → (norm𝑦) = (norm‘0))
16 norm0 29499 . . . . . . . . . . 11 (norm‘0) = 0
1715, 16eqtrdi 2796 . . . . . . . . . 10 (𝑦 = 0 → (norm𝑦) = 0)
1817breq1d 5089 . . . . . . . . 9 (𝑦 = 0 → ((norm𝑦) ≤ 1 ↔ 0 ≤ 1))
1918rspcev 3561 . . . . . . . 8 ((0 ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (norm𝑦) ≤ 1)
2013, 14, 19mp2an 689 . . . . . . 7 𝑦 ∈ ℋ (norm𝑦) ≤ 1
21 r19.41v 3276 . . . . . . 7 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (norm𝑦) ≤ 1 ∧ 𝑥 = 0))
2220, 21mpbiran 706 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0)
2312, 22bitri 274 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0)
2423abbii 2810 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥𝑥 = 0}
25 df-sn 4568 . . . 4 {0} = {𝑥𝑥 = 0}
2624, 25eqtr4i 2771 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0}
2726supeq1i 9194 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < )
28 xrltso 12886 . . 3 < Or ℝ*
29 0xr 11033 . . 3 0 ∈ ℝ*
30 supsn 9219 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3128, 29, 30mp2an 689 . 2 sup({0}, ℝ*, < ) = 0
324, 27, 313eqtri 2772 1 (normfn‘( ℋ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  wcel 2110  {cab 2717  wrex 3067  {csn 4567   class class class wbr 5079   Or wor 5503   × cxp 5588  wf 6428  cfv 6432  supcsup 9187  cc 10880  0cc0 10882  1c1 10883  *cxr 11019   < clt 11020  cle 11021  abscabs 14956  chba 29290  normcno 29294  0c0v 29295  normfncnmf 29322  LinFnclf 29325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-hilex 29370  ax-hfvadd 29371  ax-hv0cl 29374  ax-hfvmul 29376  ax-hvmul0 29381  ax-hfi 29450  ax-his3 29455
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-sup 9189  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-n0 12245  df-z 12331  df-uz 12594  df-rp 12742  df-seq 13733  df-exp 13794  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-hnorm 29339  df-nmfn 30216  df-lnfn 30219
This theorem is referenced by:  nmbdfnlb  30421  branmfn  30476
  Copyright terms: Public domain W3C validator