| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfn0 | Structured version Visualization version GIF version | ||
| Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfn0 | ⊢ (normfn‘( ℋ × {0})) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lnfn 31921 | . . 3 ⊢ ( ℋ × {0}) ∈ LinFn | |
| 2 | lnfnf 31820 | . . 3 ⊢ (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ) | |
| 3 | nmfnval 31812 | . . 3 ⊢ (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) |
| 5 | c0ex 11175 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 6 | 5 | fvconst2 7181 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
| 7 | 6 | fveq2d 6865 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0)) |
| 8 | abs0 15258 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
| 9 | 7, 8 | eqtrdi 2781 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0) |
| 10 | 9 | eqeq2d 2741 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0)) |
| 11 | 10 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
| 12 | 11 | rexbiia 3075 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
| 13 | ax-hv0cl 30939 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
| 14 | 0le1 11708 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6861 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
| 16 | norm0 31064 | . . . . . . . . . . 11 ⊢ (normℎ‘0ℎ) = 0 | |
| 17 | 15, 16 | eqtrdi 2781 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
| 18 | 17 | breq1d 5120 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18 | rspcev 3591 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
| 20 | 13, 14, 19 | mp2an 692 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
| 21 | r19.41v 3168 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
| 22 | 20, 21 | mpbiran 709 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
| 23 | 12, 22 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0) |
| 24 | 23 | abbii 2797 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
| 25 | df-sn 4593 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
| 26 | 24, 25 | eqtr4i 2756 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0} |
| 27 | 26 | supeq1i 9405 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
| 28 | xrltso 13108 | . . 3 ⊢ < Or ℝ* | |
| 29 | 0xr 11228 | . . 3 ⊢ 0 ∈ ℝ* | |
| 30 | supsn 9431 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 31 | 28, 29, 30 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 32 | 4, 27, 31 | 3eqtri 2757 | 1 ⊢ (normfn‘( ℋ × {0})) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 {csn 4592 class class class wbr 5110 Or wor 5548 × cxp 5639 ⟶wf 6510 ‘cfv 6514 supcsup 9398 ℂcc 11073 0cc0 11075 1c1 11076 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 abscabs 15207 ℋchba 30855 normℎcno 30859 0ℎc0v 30860 normfncnmf 30887 LinFnclf 30890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 ax-hvmul0 30946 ax-hfi 31015 ax-his3 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-hnorm 30904 df-nmfn 31781 df-lnfn 31784 |
| This theorem is referenced by: nmbdfnlb 31986 branmfn 32041 |
| Copyright terms: Public domain | W3C validator |