| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfn0 | Structured version Visualization version GIF version | ||
| Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfn0 | ⊢ (normfn‘( ℋ × {0})) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lnfn 31965 | . . 3 ⊢ ( ℋ × {0}) ∈ LinFn | |
| 2 | lnfnf 31864 | . . 3 ⊢ (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ) | |
| 3 | nmfnval 31856 | . . 3 ⊢ (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) |
| 5 | c0ex 11106 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 6 | 5 | fvconst2 7138 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
| 7 | 6 | fveq2d 6826 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0)) |
| 8 | abs0 15192 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
| 9 | 7, 8 | eqtrdi 2782 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0) |
| 10 | 9 | eqeq2d 2742 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0)) |
| 11 | 10 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
| 12 | 11 | rexbiia 3077 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
| 13 | ax-hv0cl 30983 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
| 14 | 0le1 11640 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
| 16 | norm0 31108 | . . . . . . . . . . 11 ⊢ (normℎ‘0ℎ) = 0 | |
| 17 | 15, 16 | eqtrdi 2782 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
| 18 | 17 | breq1d 5099 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18 | rspcev 3572 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
| 20 | 13, 14, 19 | mp2an 692 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
| 21 | r19.41v 3162 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
| 22 | 20, 21 | mpbiran 709 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
| 23 | 12, 22 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0) |
| 24 | 23 | abbii 2798 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
| 25 | df-sn 4574 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
| 26 | 24, 25 | eqtr4i 2757 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0} |
| 27 | 26 | supeq1i 9331 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
| 28 | xrltso 13040 | . . 3 ⊢ < Or ℝ* | |
| 29 | 0xr 11159 | . . 3 ⊢ 0 ∈ ℝ* | |
| 30 | supsn 9357 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 31 | 28, 29, 30 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 32 | 4, 27, 31 | 3eqtri 2758 | 1 ⊢ (normfn‘( ℋ × {0})) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {csn 4573 class class class wbr 5089 Or wor 5521 × cxp 5612 ⟶wf 6477 ‘cfv 6481 supcsup 9324 ℂcc 11004 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 abscabs 15141 ℋchba 30899 normℎcno 30903 0ℎc0v 30904 normfncnmf 30931 LinFnclf 30934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 ax-hvmul0 30990 ax-hfi 31059 ax-his3 31064 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-hnorm 30948 df-nmfn 31825 df-lnfn 31828 |
| This theorem is referenced by: nmbdfnlb 32030 branmfn 32085 |
| Copyright terms: Public domain | W3C validator |