HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfn0 Structured version   Visualization version   GIF version

Theorem nmfn0 31966
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfn0 (normfn‘( ℋ × {0})) = 0

Proof of Theorem nmfn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lnfn 31964 . . 3 ( ℋ × {0}) ∈ LinFn
2 lnfnf 31863 . . 3 (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ)
3 nmfnval 31855 . . 3 (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ))
41, 2, 3mp2b 10 . 2 (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )
5 c0ex 11144 . . . . . . . . . . . 12 0 ∈ V
65fvconst2 7160 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0)
76fveq2d 6844 . . . . . . . . . 10 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0))
8 abs0 15227 . . . . . . . . . 10 (abs‘0) = 0
97, 8eqtrdi 2780 . . . . . . . . 9 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0)
109eqeq2d 2740 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0))
1110anbi2d 630 . . . . . . 7 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0)))
1211rexbiia 3074 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0))
13 ax-hv0cl 30982 . . . . . . . 8 0 ∈ ℋ
14 0le1 11677 . . . . . . . 8 0 ≤ 1
15 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 0 → (norm𝑦) = (norm‘0))
16 norm0 31107 . . . . . . . . . . 11 (norm‘0) = 0
1715, 16eqtrdi 2780 . . . . . . . . . 10 (𝑦 = 0 → (norm𝑦) = 0)
1817breq1d 5112 . . . . . . . . 9 (𝑦 = 0 → ((norm𝑦) ≤ 1 ↔ 0 ≤ 1))
1918rspcev 3585 . . . . . . . 8 ((0 ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (norm𝑦) ≤ 1)
2013, 14, 19mp2an 692 . . . . . . 7 𝑦 ∈ ℋ (norm𝑦) ≤ 1
21 r19.41v 3165 . . . . . . 7 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (norm𝑦) ≤ 1 ∧ 𝑥 = 0))
2220, 21mpbiran 709 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0)
2312, 22bitri 275 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0)
2423abbii 2796 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥𝑥 = 0}
25 df-sn 4586 . . . 4 {0} = {𝑥𝑥 = 0}
2624, 25eqtr4i 2755 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0}
2726supeq1i 9374 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < )
28 xrltso 13077 . . 3 < Or ℝ*
29 0xr 11197 . . 3 0 ∈ ℝ*
30 supsn 9400 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3128, 29, 30mp2an 692 . 2 sup({0}, ℝ*, < ) = 0
324, 27, 313eqtri 2756 1 (normfn‘( ℋ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {csn 4585   class class class wbr 5102   Or wor 5538   × cxp 5629  wf 6495  cfv 6499  supcsup 9367  cc 11042  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185  abscabs 15176  chba 30898  normcno 30902  0c0v 30903  normfncnmf 30930  LinFnclf 30933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-hilex 30978  ax-hfvadd 30979  ax-hv0cl 30982  ax-hfvmul 30984  ax-hvmul0 30989  ax-hfi 31058  ax-his3 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-hnorm 30947  df-nmfn 31824  df-lnfn 31827
This theorem is referenced by:  nmbdfnlb  32029  branmfn  32084
  Copyright terms: Public domain W3C validator