![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmfn0 | Structured version Visualization version GIF version |
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfn0 | ⊢ (normfn‘( ℋ × {0})) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lnfn 32017 | . . 3 ⊢ ( ℋ × {0}) ∈ LinFn | |
2 | lnfnf 31916 | . . 3 ⊢ (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ) | |
3 | nmfnval 31908 | . . 3 ⊢ (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) |
5 | c0ex 11284 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
6 | 5 | fvconst2 7241 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
7 | 6 | fveq2d 6924 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0)) |
8 | abs0 15334 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
9 | 7, 8 | eqtrdi 2796 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0) |
10 | 9 | eqeq2d 2751 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0)) |
11 | 10 | anbi2d 629 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
12 | 11 | rexbiia 3098 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
13 | ax-hv0cl 31035 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
14 | 0le1 11813 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
15 | fveq2 6920 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
16 | norm0 31160 | . . . . . . . . . . 11 ⊢ (normℎ‘0ℎ) = 0 | |
17 | 15, 16 | eqtrdi 2796 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
18 | 17 | breq1d 5176 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
19 | 18 | rspcev 3635 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
20 | 13, 14, 19 | mp2an 691 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
21 | r19.41v 3195 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
22 | 20, 21 | mpbiran 708 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
23 | 12, 22 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0) |
24 | 23 | abbii 2812 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
25 | df-sn 4649 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
26 | 24, 25 | eqtr4i 2771 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0} |
27 | 26 | supeq1i 9516 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
28 | xrltso 13203 | . . 3 ⊢ < Or ℝ* | |
29 | 0xr 11337 | . . 3 ⊢ 0 ∈ ℝ* | |
30 | supsn 9541 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
31 | 28, 29, 30 | mp2an 691 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
32 | 4, 27, 31 | 3eqtri 2772 | 1 ⊢ (normfn‘( ℋ × {0})) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {csn 4648 class class class wbr 5166 Or wor 5606 × cxp 5698 ⟶wf 6569 ‘cfv 6573 supcsup 9509 ℂcc 11182 0cc0 11184 1c1 11185 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 abscabs 15283 ℋchba 30951 normℎcno 30955 0ℎc0v 30956 normfncnmf 30983 LinFnclf 30986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hilex 31031 ax-hfvadd 31032 ax-hv0cl 31035 ax-hfvmul 31037 ax-hvmul0 31042 ax-hfi 31111 ax-his3 31116 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-hnorm 31000 df-nmfn 31877 df-lnfn 31880 |
This theorem is referenced by: nmbdfnlb 32082 branmfn 32137 |
Copyright terms: Public domain | W3C validator |