HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfn0 Structured version   Visualization version   GIF version

Theorem nmfn0 30022
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfn0 (normfn‘( ℋ × {0})) = 0

Proof of Theorem nmfn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lnfn 30020 . . 3 ( ℋ × {0}) ∈ LinFn
2 lnfnf 29919 . . 3 (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ)
3 nmfnval 29911 . . 3 (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ))
41, 2, 3mp2b 10 . 2 (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )
5 c0ex 10792 . . . . . . . . . . . 12 0 ∈ V
65fvconst2 6997 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0)
76fveq2d 6699 . . . . . . . . . 10 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0))
8 abs0 14814 . . . . . . . . . 10 (abs‘0) = 0
97, 8eqtrdi 2787 . . . . . . . . 9 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0)
109eqeq2d 2747 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0))
1110anbi2d 632 . . . . . . 7 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0)))
1211rexbiia 3159 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0))
13 ax-hv0cl 29038 . . . . . . . 8 0 ∈ ℋ
14 0le1 11320 . . . . . . . 8 0 ≤ 1
15 fveq2 6695 . . . . . . . . . . 11 (𝑦 = 0 → (norm𝑦) = (norm‘0))
16 norm0 29163 . . . . . . . . . . 11 (norm‘0) = 0
1715, 16eqtrdi 2787 . . . . . . . . . 10 (𝑦 = 0 → (norm𝑦) = 0)
1817breq1d 5049 . . . . . . . . 9 (𝑦 = 0 → ((norm𝑦) ≤ 1 ↔ 0 ≤ 1))
1918rspcev 3527 . . . . . . . 8 ((0 ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (norm𝑦) ≤ 1)
2013, 14, 19mp2an 692 . . . . . . 7 𝑦 ∈ ℋ (norm𝑦) ≤ 1
21 r19.41v 3250 . . . . . . 7 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (norm𝑦) ≤ 1 ∧ 𝑥 = 0))
2220, 21mpbiran 709 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0)
2312, 22bitri 278 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0)
2423abbii 2801 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥𝑥 = 0}
25 df-sn 4528 . . . 4 {0} = {𝑥𝑥 = 0}
2624, 25eqtr4i 2762 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0}
2726supeq1i 9041 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < )
28 xrltso 12696 . . 3 < Or ℝ*
29 0xr 10845 . . 3 0 ∈ ℝ*
30 supsn 9066 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3128, 29, 30mp2an 692 . 2 sup({0}, ℝ*, < ) = 0
324, 27, 313eqtri 2763 1 (normfn‘( ℋ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2112  {cab 2714  wrex 3052  {csn 4527   class class class wbr 5039   Or wor 5452   × cxp 5534  wf 6354  cfv 6358  supcsup 9034  cc 10692  0cc0 10694  1c1 10695  *cxr 10831   < clt 10832  cle 10833  abscabs 14762  chba 28954  normcno 28958  0c0v 28959  normfncnmf 28986  LinFnclf 28989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-hilex 29034  ax-hfvadd 29035  ax-hv0cl 29038  ax-hfvmul 29040  ax-hvmul0 29045  ax-hfi 29114  ax-his3 29119
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-hnorm 29003  df-nmfn 29880  df-lnfn 29883
This theorem is referenced by:  nmbdfnlb  30085  branmfn  30140
  Copyright terms: Public domain W3C validator