| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfn0 | Structured version Visualization version GIF version | ||
| Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfn0 | ⊢ (normfn‘( ℋ × {0})) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lnfn 31929 | . . 3 ⊢ ( ℋ × {0}) ∈ LinFn | |
| 2 | lnfnf 31828 | . . 3 ⊢ (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ) | |
| 3 | nmfnval 31820 | . . 3 ⊢ (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) |
| 5 | c0ex 11109 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 6 | 5 | fvconst2 7140 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
| 7 | 6 | fveq2d 6826 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0)) |
| 8 | abs0 15192 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
| 9 | 7, 8 | eqtrdi 2780 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0) |
| 10 | 9 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0)) |
| 11 | 10 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0))) |
| 12 | 11 | rexbiia 3074 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) |
| 13 | ax-hv0cl 30947 | . . . . . . . 8 ⊢ 0ℎ ∈ ℋ | |
| 14 | 0le1 11643 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
| 16 | norm0 31072 | . . . . . . . . . . 11 ⊢ (normℎ‘0ℎ) = 0 | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . . . . 10 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = 0) |
| 18 | 17 | breq1d 5102 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18 | rspcev 3577 | . . . . . . . 8 ⊢ ((0ℎ ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1) |
| 20 | 13, 14, 19 | mp2an 692 | . . . . . . 7 ⊢ ∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 |
| 21 | r19.41v 3159 | . . . . . . 7 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0)) | |
| 22 | 20, 21 | mpbiran 709 | . . . . . 6 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0) |
| 23 | 12, 22 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0) |
| 24 | 23 | abbii 2796 | . . . 4 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥 ∣ 𝑥 = 0} |
| 25 | df-sn 4578 | . . . 4 ⊢ {0} = {𝑥 ∣ 𝑥 = 0} | |
| 26 | 24, 25 | eqtr4i 2755 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0} |
| 27 | 26 | supeq1i 9337 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < ) |
| 28 | xrltso 13043 | . . 3 ⊢ < Or ℝ* | |
| 29 | 0xr 11162 | . . 3 ⊢ 0 ∈ ℝ* | |
| 30 | supsn 9363 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 31 | 28, 29, 30 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 32 | 4, 27, 31 | 3eqtri 2756 | 1 ⊢ (normfn‘( ℋ × {0})) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {csn 4577 class class class wbr 5092 Or wor 5526 × cxp 5617 ⟶wf 6478 ‘cfv 6482 supcsup 9330 ℂcc 11007 0cc0 11009 1c1 11010 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 abscabs 15141 ℋchba 30863 normℎcno 30867 0ℎc0v 30868 normfncnmf 30895 LinFnclf 30898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-hilex 30943 ax-hfvadd 30944 ax-hv0cl 30947 ax-hfvmul 30949 ax-hvmul0 30954 ax-hfi 31023 ax-his3 31028 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-hnorm 30912 df-nmfn 31789 df-lnfn 31792 |
| This theorem is referenced by: nmbdfnlb 31994 branmfn 32049 |
| Copyright terms: Public domain | W3C validator |