HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnge0 Structured version   Visualization version   GIF version

Theorem nmfnge0 29337
Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnge0 (𝑇: ℋ⟶ℂ → 0 ≤ (normfn𝑇))

Proof of Theorem nmfnge0
StepHypRef Expression
1 ax-hv0cl 28411 . . . 4 0 ∈ ℋ
2 ffvelrn 6611 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 0 ∈ ℋ) → (𝑇‘0) ∈ ℂ)
31, 2mpan2 682 . . 3 (𝑇: ℋ⟶ℂ → (𝑇‘0) ∈ ℂ)
43absge0d 14567 . 2 (𝑇: ℋ⟶ℂ → 0 ≤ (abs‘(𝑇‘0)))
5 norm0 28536 . . . 4 (norm‘0) = 0
6 0le1 10882 . . . 4 0 ≤ 1
75, 6eqbrtri 4896 . . 3 (norm‘0) ≤ 1
8 nmfnlb 29334 . . 3 ((𝑇: ℋ⟶ℂ ∧ 0 ∈ ℋ ∧ (norm‘0) ≤ 1) → (abs‘(𝑇‘0)) ≤ (normfn𝑇))
91, 7, 8mp3an23 1581 . 2 (𝑇: ℋ⟶ℂ → (abs‘(𝑇‘0)) ≤ (normfn𝑇))
103abscld 14559 . . . 4 (𝑇: ℋ⟶ℂ → (abs‘(𝑇‘0)) ∈ ℝ)
1110rexrd 10413 . . 3 (𝑇: ℋ⟶ℂ → (abs‘(𝑇‘0)) ∈ ℝ*)
12 nmfnxr 29289 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) ∈ ℝ*)
13 0xr 10410 . . . 4 0 ∈ ℝ*
14 xrletr 12284 . . . 4 ((0 ∈ ℝ* ∧ (abs‘(𝑇‘0)) ∈ ℝ* ∧ (normfn𝑇) ∈ ℝ*) → ((0 ≤ (abs‘(𝑇‘0)) ∧ (abs‘(𝑇‘0)) ≤ (normfn𝑇)) → 0 ≤ (normfn𝑇)))
1513, 14mp3an1 1576 . . 3 (((abs‘(𝑇‘0)) ∈ ℝ* ∧ (normfn𝑇) ∈ ℝ*) → ((0 ≤ (abs‘(𝑇‘0)) ∧ (abs‘(𝑇‘0)) ≤ (normfn𝑇)) → 0 ≤ (normfn𝑇)))
1611, 12, 15syl2anc 579 . 2 (𝑇: ℋ⟶ℂ → ((0 ≤ (abs‘(𝑇‘0)) ∧ (abs‘(𝑇‘0)) ≤ (normfn𝑇)) → 0 ≤ (normfn𝑇)))
174, 9, 16mp2and 690 1 (𝑇: ℋ⟶ℂ → 0 ≤ (normfn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2164   class class class wbr 4875  wf 6123  cfv 6127  cc 10257  0cc0 10259  1c1 10260  *cxr 10397  cle 10399  abscabs 14358  chba 28327  normcno 28331  0c0v 28332  normfncnmf 28359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-hilex 28407  ax-hv0cl 28411  ax-hvmul0 28418  ax-hfi 28487  ax-his3 28492
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-hnorm 28376  df-nmfn 29255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator