HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelshi Structured version   Visualization version   GIF version

Theorem nlelshi 32041
Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nlelsh.1 𝑇 ∈ LinFn
Assertion
Ref Expression
nlelshi (null‘𝑇) ∈ S

Proof of Theorem nlelshi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 30984 . . 3 0 ∈ ℋ
2 nlelsh.1 . . . 4 𝑇 ∈ LinFn
32lnfn0i 32023 . . 3 (𝑇‘0) = 0
42lnfnfi 32022 . . . 4 𝑇: ℋ⟶ℂ
5 elnlfn 31909 . . . 4 (𝑇: ℋ⟶ℂ → (0 ∈ (null‘𝑇) ↔ (0 ∈ ℋ ∧ (𝑇‘0) = 0)))
64, 5ax-mp 5 . . 3 (0 ∈ (null‘𝑇) ↔ (0 ∈ ℋ ∧ (𝑇‘0) = 0))
71, 3, 6mpbir2an 711 . 2 0 ∈ (null‘𝑇)
8 nlfnval 31862 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
94, 8ax-mp 5 . . . . . . . . 9 (null‘𝑇) = (𝑇 “ {0})
10 cnvimass 6069 . . . . . . . . 9 (𝑇 “ {0}) ⊆ dom 𝑇
119, 10eqsstri 4005 . . . . . . . 8 (null‘𝑇) ⊆ dom 𝑇
124fdmi 6717 . . . . . . . 8 dom 𝑇 = ℋ
1311, 12sseqtri 4007 . . . . . . 7 (null‘𝑇) ⊆ ℋ
1413sseli 3954 . . . . . 6 (𝑥 ∈ (null‘𝑇) → 𝑥 ∈ ℋ)
1513sseli 3954 . . . . . 6 (𝑦 ∈ (null‘𝑇) → 𝑦 ∈ ℋ)
16 hvaddcl 30993 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
1714, 15, 16syl2an 596 . . . . 5 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 + 𝑦) ∈ ℋ)
182lnfnaddi 32024 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
1914, 15, 18syl2an 596 . . . . . . 7 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
20 elnlfn 31909 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
214, 20ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
2221simprbi 496 . . . . . . . 8 (𝑥 ∈ (null‘𝑇) → (𝑇𝑥) = 0)
23 elnlfn 31909 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (𝑦 ∈ (null‘𝑇) ↔ (𝑦 ∈ ℋ ∧ (𝑇𝑦) = 0)))
244, 23ax-mp 5 . . . . . . . . 9 (𝑦 ∈ (null‘𝑇) ↔ (𝑦 ∈ ℋ ∧ (𝑇𝑦) = 0))
2524simprbi 496 . . . . . . . 8 (𝑦 ∈ (null‘𝑇) → (𝑇𝑦) = 0)
2622, 25oveqan12d 7424 . . . . . . 7 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → ((𝑇𝑥) + (𝑇𝑦)) = (0 + 0))
2719, 26eqtrd 2770 . . . . . 6 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = (0 + 0))
28 00id 11410 . . . . . 6 (0 + 0) = 0
2927, 28eqtrdi 2786 . . . . 5 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = 0)
30 elnlfn 31909 . . . . . 6 (𝑇: ℋ⟶ℂ → ((𝑥 + 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 + 𝑦)) = 0)))
314, 30ax-mp 5 . . . . 5 ((𝑥 + 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 + 𝑦)) = 0))
3217, 29, 31sylanbrc 583 . . . 4 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 + 𝑦) ∈ (null‘𝑇))
3332rgen2 3184 . . 3 𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇)
34 hvmulcl 30994 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3515, 34sylan2 593 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · 𝑦) ∈ ℋ)
362lnfnmuli 32025 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3715, 36sylan2 593 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3825oveq2d 7421 . . . . . . 7 (𝑦 ∈ (null‘𝑇) → (𝑥 · (𝑇𝑦)) = (𝑥 · 0))
39 mul01 11414 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
4038, 39sylan9eqr 2792 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · (𝑇𝑦)) = 0)
4137, 40eqtrd 2770 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 · 𝑦)) = 0)
42 elnlfn 31909 . . . . . 6 (𝑇: ℋ⟶ℂ → ((𝑥 · 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 · 𝑦)) = 0)))
434, 42ax-mp 5 . . . . 5 ((𝑥 · 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 · 𝑦)) = 0))
4435, 41, 43sylanbrc 583 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · 𝑦) ∈ (null‘𝑇))
4544rgen2 3184 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇)
4633, 45pm3.2i 470 . 2 (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇))
47 issh3 31200 . . 3 ((null‘𝑇) ⊆ ℋ → ((null‘𝑇) ∈ S ↔ (0 ∈ (null‘𝑇) ∧ (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇)))))
4813, 47ax-mp 5 . 2 ((null‘𝑇) ∈ S ↔ (0 ∈ (null‘𝑇) ∧ (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇))))
497, 46, 48mpbir2an 711 1 (null‘𝑇) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  {csn 4601  ccnv 5653  dom cdm 5654  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   + caddc 11132   · cmul 11134  chba 30900   + cva 30901   · csm 30902  0c0v 30905   S csh 30909  nullcnl 30933  LinFnclf 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-hilex 30980  ax-hfvadd 30981  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-sh 31188  df-nlfn 31827  df-lnfn 31829
This theorem is referenced by:  nlelchi  32042
  Copyright terms: Public domain W3C validator