HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelshi Structured version   Visualization version   GIF version

Theorem nlelshi 30323
Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nlelsh.1 𝑇 ∈ LinFn
Assertion
Ref Expression
nlelshi (null‘𝑇) ∈ S

Proof of Theorem nlelshi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 29266 . . 3 0 ∈ ℋ
2 nlelsh.1 . . . 4 𝑇 ∈ LinFn
32lnfn0i 30305 . . 3 (𝑇‘0) = 0
42lnfnfi 30304 . . . 4 𝑇: ℋ⟶ℂ
5 elnlfn 30191 . . . 4 (𝑇: ℋ⟶ℂ → (0 ∈ (null‘𝑇) ↔ (0 ∈ ℋ ∧ (𝑇‘0) = 0)))
64, 5ax-mp 5 . . 3 (0 ∈ (null‘𝑇) ↔ (0 ∈ ℋ ∧ (𝑇‘0) = 0))
71, 3, 6mpbir2an 707 . 2 0 ∈ (null‘𝑇)
8 nlfnval 30144 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
94, 8ax-mp 5 . . . . . . . . 9 (null‘𝑇) = (𝑇 “ {0})
10 cnvimass 5978 . . . . . . . . 9 (𝑇 “ {0}) ⊆ dom 𝑇
119, 10eqsstri 3951 . . . . . . . 8 (null‘𝑇) ⊆ dom 𝑇
124fdmi 6596 . . . . . . . 8 dom 𝑇 = ℋ
1311, 12sseqtri 3953 . . . . . . 7 (null‘𝑇) ⊆ ℋ
1413sseli 3913 . . . . . 6 (𝑥 ∈ (null‘𝑇) → 𝑥 ∈ ℋ)
1513sseli 3913 . . . . . 6 (𝑦 ∈ (null‘𝑇) → 𝑦 ∈ ℋ)
16 hvaddcl 29275 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
1714, 15, 16syl2an 595 . . . . 5 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 + 𝑦) ∈ ℋ)
182lnfnaddi 30306 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
1914, 15, 18syl2an 595 . . . . . . 7 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
20 elnlfn 30191 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
214, 20ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
2221simprbi 496 . . . . . . . 8 (𝑥 ∈ (null‘𝑇) → (𝑇𝑥) = 0)
23 elnlfn 30191 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (𝑦 ∈ (null‘𝑇) ↔ (𝑦 ∈ ℋ ∧ (𝑇𝑦) = 0)))
244, 23ax-mp 5 . . . . . . . . 9 (𝑦 ∈ (null‘𝑇) ↔ (𝑦 ∈ ℋ ∧ (𝑇𝑦) = 0))
2524simprbi 496 . . . . . . . 8 (𝑦 ∈ (null‘𝑇) → (𝑇𝑦) = 0)
2622, 25oveqan12d 7274 . . . . . . 7 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → ((𝑇𝑥) + (𝑇𝑦)) = (0 + 0))
2719, 26eqtrd 2778 . . . . . 6 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = (0 + 0))
28 00id 11080 . . . . . 6 (0 + 0) = 0
2927, 28eqtrdi 2795 . . . . 5 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = 0)
30 elnlfn 30191 . . . . . 6 (𝑇: ℋ⟶ℂ → ((𝑥 + 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 + 𝑦)) = 0)))
314, 30ax-mp 5 . . . . 5 ((𝑥 + 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 + 𝑦)) = 0))
3217, 29, 31sylanbrc 582 . . . 4 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 + 𝑦) ∈ (null‘𝑇))
3332rgen2 3126 . . 3 𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇)
34 hvmulcl 29276 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3515, 34sylan2 592 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · 𝑦) ∈ ℋ)
362lnfnmuli 30307 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3715, 36sylan2 592 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3825oveq2d 7271 . . . . . . 7 (𝑦 ∈ (null‘𝑇) → (𝑥 · (𝑇𝑦)) = (𝑥 · 0))
39 mul01 11084 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
4038, 39sylan9eqr 2801 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · (𝑇𝑦)) = 0)
4137, 40eqtrd 2778 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 · 𝑦)) = 0)
42 elnlfn 30191 . . . . . 6 (𝑇: ℋ⟶ℂ → ((𝑥 · 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 · 𝑦)) = 0)))
434, 42ax-mp 5 . . . . 5 ((𝑥 · 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 · 𝑦)) = 0))
4435, 41, 43sylanbrc 582 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · 𝑦) ∈ (null‘𝑇))
4544rgen2 3126 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇)
4633, 45pm3.2i 470 . 2 (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇))
47 issh3 29482 . . 3 ((null‘𝑇) ⊆ ℋ → ((null‘𝑇) ∈ S ↔ (0 ∈ (null‘𝑇) ∧ (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇)))))
4813, 47ax-mp 5 . 2 ((null‘𝑇) ∈ S ↔ (0 ∈ (null‘𝑇) ∧ (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇))))
497, 46, 48mpbir2an 707 1 (null‘𝑇) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  {csn 4558  ccnv 5579  dom cdm 5580  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805   · cmul 10807  chba 29182   + cva 29183   · csm 29184  0c0v 29187   S csh 29191  nullcnl 29215  LinFnclf 29217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-sh 29470  df-nlfn 30109  df-lnfn 30111
This theorem is referenced by:  nlelchi  30324
  Copyright terms: Public domain W3C validator