HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelshi Structured version   Visualization version   GIF version

Theorem nlelshi 32039
Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nlelsh.1 𝑇 ∈ LinFn
Assertion
Ref Expression
nlelshi (null‘𝑇) ∈ S

Proof of Theorem nlelshi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 30982 . . 3 0 ∈ ℋ
2 nlelsh.1 . . . 4 𝑇 ∈ LinFn
32lnfn0i 32021 . . 3 (𝑇‘0) = 0
42lnfnfi 32020 . . . 4 𝑇: ℋ⟶ℂ
5 elnlfn 31907 . . . 4 (𝑇: ℋ⟶ℂ → (0 ∈ (null‘𝑇) ↔ (0 ∈ ℋ ∧ (𝑇‘0) = 0)))
64, 5ax-mp 5 . . 3 (0 ∈ (null‘𝑇) ↔ (0 ∈ ℋ ∧ (𝑇‘0) = 0))
71, 3, 6mpbir2an 711 . 2 0 ∈ (null‘𝑇)
8 nlfnval 31860 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (null‘𝑇) = (𝑇 “ {0}))
94, 8ax-mp 5 . . . . . . . . 9 (null‘𝑇) = (𝑇 “ {0})
10 cnvimass 6042 . . . . . . . . 9 (𝑇 “ {0}) ⊆ dom 𝑇
119, 10eqsstri 3990 . . . . . . . 8 (null‘𝑇) ⊆ dom 𝑇
124fdmi 6681 . . . . . . . 8 dom 𝑇 = ℋ
1311, 12sseqtri 3992 . . . . . . 7 (null‘𝑇) ⊆ ℋ
1413sseli 3939 . . . . . 6 (𝑥 ∈ (null‘𝑇) → 𝑥 ∈ ℋ)
1513sseli 3939 . . . . . 6 (𝑦 ∈ (null‘𝑇) → 𝑦 ∈ ℋ)
16 hvaddcl 30991 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
1714, 15, 16syl2an 596 . . . . 5 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 + 𝑦) ∈ ℋ)
182lnfnaddi 32022 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
1914, 15, 18syl2an 596 . . . . . . 7 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
20 elnlfn 31907 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
214, 20ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
2221simprbi 496 . . . . . . . 8 (𝑥 ∈ (null‘𝑇) → (𝑇𝑥) = 0)
23 elnlfn 31907 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → (𝑦 ∈ (null‘𝑇) ↔ (𝑦 ∈ ℋ ∧ (𝑇𝑦) = 0)))
244, 23ax-mp 5 . . . . . . . . 9 (𝑦 ∈ (null‘𝑇) ↔ (𝑦 ∈ ℋ ∧ (𝑇𝑦) = 0))
2524simprbi 496 . . . . . . . 8 (𝑦 ∈ (null‘𝑇) → (𝑇𝑦) = 0)
2622, 25oveqan12d 7388 . . . . . . 7 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → ((𝑇𝑥) + (𝑇𝑦)) = (0 + 0))
2719, 26eqtrd 2764 . . . . . 6 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = (0 + 0))
28 00id 11325 . . . . . 6 (0 + 0) = 0
2927, 28eqtrdi 2780 . . . . 5 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 + 𝑦)) = 0)
30 elnlfn 31907 . . . . . 6 (𝑇: ℋ⟶ℂ → ((𝑥 + 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 + 𝑦)) = 0)))
314, 30ax-mp 5 . . . . 5 ((𝑥 + 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 + 𝑦)) = 0))
3217, 29, 31sylanbrc 583 . . . 4 ((𝑥 ∈ (null‘𝑇) ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 + 𝑦) ∈ (null‘𝑇))
3332rgen2 3175 . . 3 𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇)
34 hvmulcl 30992 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3515, 34sylan2 593 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · 𝑦) ∈ ℋ)
362lnfnmuli 32023 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3715, 36sylan2 593 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3825oveq2d 7385 . . . . . . 7 (𝑦 ∈ (null‘𝑇) → (𝑥 · (𝑇𝑦)) = (𝑥 · 0))
39 mul01 11329 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
4038, 39sylan9eqr 2786 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · (𝑇𝑦)) = 0)
4137, 40eqtrd 2764 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑇‘(𝑥 · 𝑦)) = 0)
42 elnlfn 31907 . . . . . 6 (𝑇: ℋ⟶ℂ → ((𝑥 · 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 · 𝑦)) = 0)))
434, 42ax-mp 5 . . . . 5 ((𝑥 · 𝑦) ∈ (null‘𝑇) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ (𝑇‘(𝑥 · 𝑦)) = 0))
4435, 41, 43sylanbrc 583 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (null‘𝑇)) → (𝑥 · 𝑦) ∈ (null‘𝑇))
4544rgen2 3175 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇)
4633, 45pm3.2i 470 . 2 (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇))
47 issh3 31198 . . 3 ((null‘𝑇) ⊆ ℋ → ((null‘𝑇) ∈ S ↔ (0 ∈ (null‘𝑇) ∧ (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇)))))
4813, 47ax-mp 5 . 2 ((null‘𝑇) ∈ S ↔ (0 ∈ (null‘𝑇) ∧ (∀𝑥 ∈ (null‘𝑇)∀𝑦 ∈ (null‘𝑇)(𝑥 + 𝑦) ∈ (null‘𝑇) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (null‘𝑇)(𝑥 · 𝑦) ∈ (null‘𝑇))))
497, 46, 48mpbir2an 711 1 (null‘𝑇) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  {csn 4585  ccnv 5630  dom cdm 5631  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047   · cmul 11049  chba 30898   + cva 30899   · csm 30900  0c0v 30903   S csh 30907  nullcnl 30931  LinFnclf 30933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-hilex 30978  ax-hfvadd 30979  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-sh 31186  df-nlfn 31825  df-lnfn 31827
This theorem is referenced by:  nlelchi  32040
  Copyright terms: Public domain W3C validator