![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normneg | Structured version Visualization version GIF version |
Description: The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normneg | ⊢ (𝐴 ∈ ℋ → (normℎ‘(-1 ·ℎ 𝐴)) = (normℎ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28559 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | normsub 28699 | . . 3 ⊢ ((0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → (normℎ‘(0ℎ −ℎ 𝐴)) = (normℎ‘(𝐴 −ℎ 0ℎ))) | |
3 | 1, 2 | mpan 677 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘(0ℎ −ℎ 𝐴)) = (normℎ‘(𝐴 −ℎ 0ℎ))) |
4 | hv2neg 28584 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴)) | |
5 | 4 | fveq2d 6503 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘(0ℎ −ℎ 𝐴)) = (normℎ‘(-1 ·ℎ 𝐴))) |
6 | hvsub0 28632 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 0ℎ) = 𝐴) | |
7 | 6 | fveq2d 6503 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝐴 −ℎ 0ℎ)) = (normℎ‘𝐴)) |
8 | 3, 5, 7 | 3eqtr3d 2823 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘(-1 ·ℎ 𝐴)) = (normℎ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 (class class class)co 6976 1c1 10336 -cneg 10671 ℋchba 28475 ·ℎ csm 28477 normℎcno 28479 0ℎc0v 28480 −ℎ cmv 28481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-hfvadd 28556 ax-hvcom 28557 ax-hv0cl 28559 ax-hvaddid 28560 ax-hfvmul 28561 ax-hvmulid 28562 ax-hvmulass 28563 ax-hvdistr1 28564 ax-hvmul0 28566 ax-hfi 28635 ax-his1 28638 ax-his3 28640 ax-his4 28641 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-sup 8701 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-hnorm 28524 df-hvsub 28527 |
This theorem is referenced by: nmopnegi 29523 cdj3lem1 29992 |
Copyright terms: Public domain | W3C validator |