![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmcfnexi | Structured version Visualization version GIF version |
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcfnex.1 | ⊢ 𝑇 ∈ LinFn |
nmcfnex.2 | ⊢ 𝑇 ∈ ContFn |
Ref | Expression |
---|---|
nmcfnexi | ⊢ (normfn‘𝑇) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex.2 | . . . 4 ⊢ 𝑇 ∈ ContFn | |
2 | ax-hv0cl 31035 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
3 | 1rp 13061 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | cnfnc 31962 | . . . 4 ⊢ ((𝑇 ∈ ContFn ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1)) | |
5 | 1, 2, 3, 4 | mp3an 1461 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) |
6 | hvsub0 31108 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
7 | 6 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
8 | 7 | breq1d 5176 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
9 | nmcfnex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinFn | |
10 | 9 | lnfn0i 32074 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0 |
11 | 10 | oveq2i 7459 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) − (𝑇‘0ℎ)) = ((𝑇‘𝑧) − 0) |
12 | 9 | lnfnfi 32073 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ℂ |
13 | 12 | ffvelcdmi 7117 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℂ) |
14 | 13 | subid1d 11636 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − 0) = (𝑇‘𝑧)) |
15 | 11, 14 | eqtrid 2792 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
16 | 15 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) = (abs‘(𝑇‘𝑧))) |
17 | 16 | breq1d 5176 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1 ↔ (abs‘(𝑇‘𝑧)) < 1)) |
18 | 8, 17 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1))) |
19 | 18 | ralbiia 3097 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
20 | 19 | rexbii 3100 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
21 | 5, 20 | mpbi 230 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1) |
22 | nmfnval 31908 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < )) | |
23 | 12, 22 | ax-mp 5 | . 2 ⊢ (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) |
24 | 12 | ffvelcdmi 7117 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℂ) |
25 | 24 | abscld 15485 | . 2 ⊢ (𝑥 ∈ ℋ → (abs‘(𝑇‘𝑥)) ∈ ℝ) |
26 | 10 | fveq2i 6923 | . . 3 ⊢ (abs‘(𝑇‘0ℎ)) = (abs‘0) |
27 | abs0 15334 | . . 3 ⊢ (abs‘0) = 0 | |
28 | 26, 27 | eqtri 2768 | . 2 ⊢ (abs‘(𝑇‘0ℎ)) = 0 |
29 | rpcn 13067 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
30 | 9 | lnfnmuli 32076 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
31 | 29, 30 | sylan 579 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
32 | 31 | fveq2d 6924 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (abs‘((𝑦 / 2) · (𝑇‘𝑥)))) |
33 | absmul 15343 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) | |
34 | 29, 24, 33 | syl2an 595 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) |
35 | rpre 13065 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
36 | rpge0 13070 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
37 | 35, 36 | absidd 15471 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
38 | 37 | adantr 480 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
39 | 38 | oveq1d 7463 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥))) = ((𝑦 / 2) · (abs‘(𝑇‘𝑥)))) |
40 | 32, 34, 39 | 3eqtrrd 2785 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇‘𝑥))) = (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
41 | 21, 23, 25, 28, 40 | nmcexi 32058 | 1 ⊢ (normfn‘𝑇) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 2c2 12348 ℝ+crp 13057 abscabs 15283 ℋchba 30951 ·ℎ csm 30953 normℎcno 30955 0ℎc0v 30956 −ℎ cmv 30957 normfncnmf 30983 ContFnccnfn 30985 LinFnclf 30986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-hilex 31031 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his3 31116 ax-his4 31117 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-hnorm 31000 df-hvsub 31003 df-nmfn 31877 df-cnfn 31879 df-lnfn 31880 |
This theorem is referenced by: nmcfnlbi 32084 nmcfnex 32085 |
Copyright terms: Public domain | W3C validator |