![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmcfnexi | Structured version Visualization version GIF version |
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcfnex.1 | ⊢ 𝑇 ∈ LinFn |
nmcfnex.2 | ⊢ 𝑇 ∈ ContFn |
Ref | Expression |
---|---|
nmcfnexi | ⊢ (normfn‘𝑇) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex.2 | . . . 4 ⊢ 𝑇 ∈ ContFn | |
2 | ax-hv0cl 30936 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
3 | 1rp 13032 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | cnfnc 31863 | . . . 4 ⊢ ((𝑇 ∈ ContFn ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1)) | |
5 | 1, 2, 3, 4 | mp3an 1458 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) |
6 | hvsub0 31009 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
7 | 6 | fveq2d 6905 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
8 | 7 | breq1d 5163 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
9 | nmcfnex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinFn | |
10 | 9 | lnfn0i 31975 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0 |
11 | 10 | oveq2i 7435 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) − (𝑇‘0ℎ)) = ((𝑇‘𝑧) − 0) |
12 | 9 | lnfnfi 31974 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ℂ |
13 | 12 | ffvelcdmi 7097 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℂ) |
14 | 13 | subid1d 11610 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − 0) = (𝑇‘𝑧)) |
15 | 11, 14 | eqtrid 2778 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
16 | 15 | fveq2d 6905 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) = (abs‘(𝑇‘𝑧))) |
17 | 16 | breq1d 5163 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1 ↔ (abs‘(𝑇‘𝑧)) < 1)) |
18 | 8, 17 | imbi12d 343 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1))) |
19 | 18 | ralbiia 3081 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
20 | 19 | rexbii 3084 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
21 | 5, 20 | mpbi 229 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1) |
22 | nmfnval 31809 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < )) | |
23 | 12, 22 | ax-mp 5 | . 2 ⊢ (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) |
24 | 12 | ffvelcdmi 7097 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℂ) |
25 | 24 | abscld 15441 | . 2 ⊢ (𝑥 ∈ ℋ → (abs‘(𝑇‘𝑥)) ∈ ℝ) |
26 | 10 | fveq2i 6904 | . . 3 ⊢ (abs‘(𝑇‘0ℎ)) = (abs‘0) |
27 | abs0 15290 | . . 3 ⊢ (abs‘0) = 0 | |
28 | 26, 27 | eqtri 2754 | . 2 ⊢ (abs‘(𝑇‘0ℎ)) = 0 |
29 | rpcn 13038 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
30 | 9 | lnfnmuli 31977 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
31 | 29, 30 | sylan 578 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
32 | 31 | fveq2d 6905 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (abs‘((𝑦 / 2) · (𝑇‘𝑥)))) |
33 | absmul 15299 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) | |
34 | 29, 24, 33 | syl2an 594 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) |
35 | rpre 13036 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
36 | rpge0 13041 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
37 | 35, 36 | absidd 15427 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
38 | 37 | adantr 479 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
39 | 38 | oveq1d 7439 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥))) = ((𝑦 / 2) · (abs‘(𝑇‘𝑥)))) |
40 | 32, 34, 39 | 3eqtrrd 2771 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇‘𝑥))) = (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
41 | 21, 23, 25, 28, 40 | nmcexi 31959 | 1 ⊢ (normfn‘𝑇) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∃wrex 3060 class class class wbr 5153 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 supcsup 9483 ℂcc 11156 ℝcr 11157 0cc0 11158 1c1 11159 · cmul 11163 ℝ*cxr 11297 < clt 11298 ≤ cle 11299 − cmin 11494 / cdiv 11921 2c2 12319 ℝ+crp 13028 abscabs 15239 ℋchba 30852 ·ℎ csm 30854 normℎcno 30856 0ℎc0v 30857 −ℎ cmv 30858 normfncnmf 30884 ContFnccnfn 30886 LinFnclf 30887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-hilex 30932 ax-hv0cl 30936 ax-hvaddid 30937 ax-hfvmul 30938 ax-hvmulid 30939 ax-hvmulass 30940 ax-hvmul0 30943 ax-hfi 31012 ax-his1 31015 ax-his3 31017 ax-his4 31018 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-hnorm 30901 df-hvsub 30904 df-nmfn 31778 df-cnfn 31780 df-lnfn 31781 |
This theorem is referenced by: nmcfnlbi 31985 nmcfnex 31986 |
Copyright terms: Public domain | W3C validator |