| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmcfnexi | Structured version Visualization version GIF version | ||
| Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmcfnex.1 | ⊢ 𝑇 ∈ LinFn |
| nmcfnex.2 | ⊢ 𝑇 ∈ ContFn |
| Ref | Expression |
|---|---|
| nmcfnexi | ⊢ (normfn‘𝑇) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcfnex.2 | . . . 4 ⊢ 𝑇 ∈ ContFn | |
| 2 | ax-hv0cl 30939 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1rp 12962 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | cnfnc 31866 | . . . 4 ⊢ ((𝑇 ∈ ContFn ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) |
| 6 | hvsub0 31012 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
| 7 | 6 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
| 8 | 7 | breq1d 5120 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
| 9 | nmcfnex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinFn | |
| 10 | 9 | lnfn0i 31978 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0 |
| 11 | 10 | oveq2i 7401 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) − (𝑇‘0ℎ)) = ((𝑇‘𝑧) − 0) |
| 12 | 9 | lnfnfi 31977 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ℂ |
| 13 | 12 | ffvelcdmi 7058 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℂ) |
| 14 | 13 | subid1d 11529 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − 0) = (𝑇‘𝑧)) |
| 15 | 11, 14 | eqtrid 2777 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
| 16 | 15 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) = (abs‘(𝑇‘𝑧))) |
| 17 | 16 | breq1d 5120 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1 ↔ (abs‘(𝑇‘𝑧)) < 1)) |
| 18 | 8, 17 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1))) |
| 19 | 18 | ralbiia 3074 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
| 20 | 19 | rexbii 3077 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
| 21 | 5, 20 | mpbi 230 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1) |
| 22 | nmfnval 31812 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < )) | |
| 23 | 12, 22 | ax-mp 5 | . 2 ⊢ (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) |
| 24 | 12 | ffvelcdmi 7058 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℂ) |
| 25 | 24 | abscld 15412 | . 2 ⊢ (𝑥 ∈ ℋ → (abs‘(𝑇‘𝑥)) ∈ ℝ) |
| 26 | 10 | fveq2i 6864 | . . 3 ⊢ (abs‘(𝑇‘0ℎ)) = (abs‘0) |
| 27 | abs0 15258 | . . 3 ⊢ (abs‘0) = 0 | |
| 28 | 26, 27 | eqtri 2753 | . 2 ⊢ (abs‘(𝑇‘0ℎ)) = 0 |
| 29 | rpcn 12969 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
| 30 | 9 | lnfnmuli 31980 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
| 31 | 29, 30 | sylan 580 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
| 32 | 31 | fveq2d 6865 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (abs‘((𝑦 / 2) · (𝑇‘𝑥)))) |
| 33 | absmul 15267 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) | |
| 34 | 29, 24, 33 | syl2an 596 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) |
| 35 | rpre 12967 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
| 36 | rpge0 12972 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
| 37 | 35, 36 | absidd 15396 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 38 | 37 | adantr 480 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 39 | 38 | oveq1d 7405 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥))) = ((𝑦 / 2) · (abs‘(𝑇‘𝑥)))) |
| 40 | 32, 34, 39 | 3eqtrrd 2770 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇‘𝑥))) = (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
| 41 | 21, 23, 25, 28, 40 | nmcexi 31962 | 1 ⊢ (normfn‘𝑇) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 2c2 12248 ℝ+crp 12958 abscabs 15207 ℋchba 30855 ·ℎ csm 30857 normℎcno 30859 0ℎc0v 30860 −ℎ cmv 30861 normfncnmf 30887 ContFnccnfn 30889 LinFnclf 30890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-hilex 30935 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-hnorm 30904 df-hvsub 30907 df-nmfn 31781 df-cnfn 31783 df-lnfn 31784 |
| This theorem is referenced by: nmcfnlbi 31988 nmcfnex 31989 |
| Copyright terms: Public domain | W3C validator |