HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Structured version   Visualization version   GIF version

Theorem nmcfnexi 30993
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnexi (normfn𝑇) ∈ ℝ

Proof of Theorem nmcfnexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4 𝑇 ∈ ContFn
2 ax-hv0cl 29945 . . . 4 0 ∈ ℋ
3 1rp 12919 . . . 4 1 ∈ ℝ+
4 cnfnc 30872 . . . 4 ((𝑇 ∈ ContFn ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1461 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 30018 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6846 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5115 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcfnex.1 . . . . . . . . . . 11 𝑇 ∈ LinFn
109lnfn0i 30984 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7368 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnfnfi 30983 . . . . . . . . . . 11 𝑇: ℋ⟶ℂ
1312ffvelcdmi 7034 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℂ)
1413subid1d 11501 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1511, 14eqtrid 2788 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1615fveq2d 6846 . . . . . . 7 (𝑧 ∈ ℋ → (abs‘((𝑇𝑧) − (𝑇‘0))) = (abs‘(𝑇𝑧)))
1716breq1d 5115 . . . . . 6 (𝑧 ∈ ℋ → ((abs‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (abs‘(𝑇𝑧)) < 1))
188, 17imbi12d 344 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)))
1918ralbiia 3094 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
2019rexbii 3097 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
215, 20mpbi 229 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)
22 nmfnval 30818 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
2312, 22ax-mp 5 . 2 (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < )
2412ffvelcdmi 7034 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℂ)
2524abscld 15321 . 2 (𝑥 ∈ ℋ → (abs‘(𝑇𝑥)) ∈ ℝ)
2610fveq2i 6845 . . 3 (abs‘(𝑇‘0)) = (abs‘0)
27 abs0 15170 . . 3 (abs‘0) = 0
2826, 27eqtri 2764 . 2 (abs‘(𝑇‘0)) = 0
29 rpcn 12925 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
309lnfnmuli 30986 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3129, 30sylan 580 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3231fveq2d 6846 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) · 𝑥))) = (abs‘((𝑦 / 2) · (𝑇𝑥))))
33 absmul 15179 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
3429, 24, 33syl2an 596 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
35 rpre 12923 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
36 rpge0 12928 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3735, 36absidd 15307 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3837adantr 481 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3938oveq1d 7372 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))) = ((𝑦 / 2) · (abs‘(𝑇𝑥))))
4032, 34, 393eqtrrd 2781 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇𝑥))) = (abs‘(𝑇‘((𝑦 / 2) · 𝑥))))
4121, 23, 25, 28, 40nmcexi 30968 1 (normfn𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  +crp 12915  abscabs 15119  chba 29861   · csm 29863  normcno 29865  0c0v 29866   cmv 29867  normfncnmf 29893  ContFnccnfn 29895  LinFnclf 29896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hilex 29941  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-hnorm 29910  df-hvsub 29913  df-nmfn 30787  df-cnfn 30789  df-lnfn 30790
This theorem is referenced by:  nmcfnlbi  30994  nmcfnex  30995
  Copyright terms: Public domain W3C validator