Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmcfnexi | Structured version Visualization version GIF version |
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcfnex.1 | ⊢ 𝑇 ∈ LinFn |
nmcfnex.2 | ⊢ 𝑇 ∈ ContFn |
Ref | Expression |
---|---|
nmcfnexi | ⊢ (normfn‘𝑇) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex.2 | . . . 4 ⊢ 𝑇 ∈ ContFn | |
2 | ax-hv0cl 29365 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
3 | 1rp 12734 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | cnfnc 30292 | . . . 4 ⊢ ((𝑇 ∈ ContFn ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1)) | |
5 | 1, 2, 3, 4 | mp3an 1460 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) |
6 | hvsub0 29438 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
7 | 6 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
8 | 7 | breq1d 5084 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
9 | nmcfnex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinFn | |
10 | 9 | lnfn0i 30404 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0 |
11 | 10 | oveq2i 7286 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) − (𝑇‘0ℎ)) = ((𝑇‘𝑧) − 0) |
12 | 9 | lnfnfi 30403 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ℂ |
13 | 12 | ffvelrni 6960 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℂ) |
14 | 13 | subid1d 11321 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − 0) = (𝑇‘𝑧)) |
15 | 11, 14 | eqtrid 2790 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) − (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
16 | 15 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) = (abs‘(𝑇‘𝑧))) |
17 | 16 | breq1d 5084 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1 ↔ (abs‘(𝑇‘𝑧)) < 1)) |
18 | 8, 17 | imbi12d 345 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1))) |
19 | 18 | ralbiia 3091 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
20 | 19 | rexbii 3181 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (abs‘((𝑇‘𝑧) − (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1)) |
21 | 5, 20 | mpbi 229 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (abs‘(𝑇‘𝑧)) < 1) |
22 | nmfnval 30238 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < )) | |
23 | 12, 22 | ax-mp 5 | . 2 ⊢ (normfn‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) |
24 | 12 | ffvelrni 6960 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℂ) |
25 | 24 | abscld 15148 | . 2 ⊢ (𝑥 ∈ ℋ → (abs‘(𝑇‘𝑥)) ∈ ℝ) |
26 | 10 | fveq2i 6777 | . . 3 ⊢ (abs‘(𝑇‘0ℎ)) = (abs‘0) |
27 | abs0 14997 | . . 3 ⊢ (abs‘0) = 0 | |
28 | 26, 27 | eqtri 2766 | . 2 ⊢ (abs‘(𝑇‘0ℎ)) = 0 |
29 | rpcn 12740 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
30 | 9 | lnfnmuli 30406 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
31 | 29, 30 | sylan 580 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) · (𝑇‘𝑥))) |
32 | 31 | fveq2d 6778 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (abs‘((𝑦 / 2) · (𝑇‘𝑥)))) |
33 | absmul 15006 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) | |
34 | 29, 24, 33 | syl2an 596 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥)))) |
35 | rpre 12738 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
36 | rpge0 12743 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
37 | 35, 36 | absidd 15134 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
38 | 37 | adantr 481 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
39 | 38 | oveq1d 7290 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇‘𝑥))) = ((𝑦 / 2) · (abs‘(𝑇‘𝑥)))) |
40 | 32, 34, 39 | 3eqtrrd 2783 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇‘𝑥))) = (abs‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
41 | 21, 23, 25, 28, 40 | nmcexi 30388 | 1 ⊢ (normfn‘𝑇) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supcsup 9199 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 2c2 12028 ℝ+crp 12730 abscabs 14945 ℋchba 29281 ·ℎ csm 29283 normℎcno 29285 0ℎc0v 29286 −ℎ cmv 29287 normfncnmf 29313 ContFnccnfn 29315 LinFnclf 29316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-hilex 29361 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-hnorm 29330 df-hvsub 29333 df-nmfn 30207 df-cnfn 30209 df-lnfn 30210 |
This theorem is referenced by: nmcfnlbi 30414 nmcfnex 30415 |
Copyright terms: Public domain | W3C validator |