HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Structured version   Visualization version   GIF version

Theorem nmcfnexi 32032
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnexi (normfn𝑇) ∈ ℝ

Proof of Theorem nmcfnexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4 𝑇 ∈ ContFn
2 ax-hv0cl 30984 . . . 4 0 ∈ ℋ
3 1rp 13012 . . . 4 1 ∈ ℝ+
4 cnfnc 31911 . . . 4 ((𝑇 ∈ ContFn ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1463 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 31057 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6880 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5129 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcfnex.1 . . . . . . . . . . 11 𝑇 ∈ LinFn
109lnfn0i 32023 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7416 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnfnfi 32022 . . . . . . . . . . 11 𝑇: ℋ⟶ℂ
1312ffvelcdmi 7073 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℂ)
1413subid1d 11583 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1511, 14eqtrid 2782 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1615fveq2d 6880 . . . . . . 7 (𝑧 ∈ ℋ → (abs‘((𝑇𝑧) − (𝑇‘0))) = (abs‘(𝑇𝑧)))
1716breq1d 5129 . . . . . 6 (𝑧 ∈ ℋ → ((abs‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (abs‘(𝑇𝑧)) < 1))
188, 17imbi12d 344 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)))
1918ralbiia 3080 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
2019rexbii 3083 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
215, 20mpbi 230 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)
22 nmfnval 31857 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
2312, 22ax-mp 5 . 2 (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < )
2412ffvelcdmi 7073 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℂ)
2524abscld 15455 . 2 (𝑥 ∈ ℋ → (abs‘(𝑇𝑥)) ∈ ℝ)
2610fveq2i 6879 . . 3 (abs‘(𝑇‘0)) = (abs‘0)
27 abs0 15304 . . 3 (abs‘0) = 0
2826, 27eqtri 2758 . 2 (abs‘(𝑇‘0)) = 0
29 rpcn 13019 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
309lnfnmuli 32025 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3129, 30sylan 580 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3231fveq2d 6880 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) · 𝑥))) = (abs‘((𝑦 / 2) · (𝑇𝑥))))
33 absmul 15313 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
3429, 24, 33syl2an 596 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
35 rpre 13017 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
36 rpge0 13022 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3735, 36absidd 15441 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3837adantr 480 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3938oveq1d 7420 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))) = ((𝑦 / 2) · (abs‘(𝑇𝑥))))
4032, 34, 393eqtrrd 2775 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇𝑥))) = (abs‘(𝑇‘((𝑦 / 2) · 𝑥))))
4121, 23, 25, 28, 40nmcexi 32007 1 (normfn𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  +crp 13008  abscabs 15253  chba 30900   · csm 30902  normcno 30904  0c0v 30905   cmv 30906  normfncnmf 30932  ContFnccnfn 30934  LinFnclf 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-hilex 30980  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-hnorm 30949  df-hvsub 30952  df-nmfn 31826  df-cnfn 31828  df-lnfn 31829
This theorem is referenced by:  nmcfnlbi  32033  nmcfnex  32034
  Copyright terms: Public domain W3C validator