HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Structured version   Visualization version   GIF version

Theorem nmcfnexi 30314
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnexi (normfn𝑇) ∈ ℝ

Proof of Theorem nmcfnexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4 𝑇 ∈ ContFn
2 ax-hv0cl 29266 . . . 4 0 ∈ ℋ
3 1rp 12663 . . . 4 1 ∈ ℝ+
4 cnfnc 30193 . . . 4 ((𝑇 ∈ ContFn ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1459 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 29339 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6760 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5080 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcfnex.1 . . . . . . . . . . 11 𝑇 ∈ LinFn
109lnfn0i 30305 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7266 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnfnfi 30304 . . . . . . . . . . 11 𝑇: ℋ⟶ℂ
1312ffvelrni 6942 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℂ)
1413subid1d 11251 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1511, 14syl5eq 2791 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1615fveq2d 6760 . . . . . . 7 (𝑧 ∈ ℋ → (abs‘((𝑇𝑧) − (𝑇‘0))) = (abs‘(𝑇𝑧)))
1716breq1d 5080 . . . . . 6 (𝑧 ∈ ℋ → ((abs‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (abs‘(𝑇𝑧)) < 1))
188, 17imbi12d 344 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)))
1918ralbiia 3089 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
2019rexbii 3177 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
215, 20mpbi 229 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)
22 nmfnval 30139 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
2312, 22ax-mp 5 . 2 (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < )
2412ffvelrni 6942 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℂ)
2524abscld 15076 . 2 (𝑥 ∈ ℋ → (abs‘(𝑇𝑥)) ∈ ℝ)
2610fveq2i 6759 . . 3 (abs‘(𝑇‘0)) = (abs‘0)
27 abs0 14925 . . 3 (abs‘0) = 0
2826, 27eqtri 2766 . 2 (abs‘(𝑇‘0)) = 0
29 rpcn 12669 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
309lnfnmuli 30307 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3129, 30sylan 579 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3231fveq2d 6760 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) · 𝑥))) = (abs‘((𝑦 / 2) · (𝑇𝑥))))
33 absmul 14934 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
3429, 24, 33syl2an 595 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
35 rpre 12667 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
36 rpge0 12672 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3735, 36absidd 15062 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3837adantr 480 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3938oveq1d 7270 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))) = ((𝑦 / 2) · (abs‘(𝑇𝑥))))
4032, 34, 393eqtrrd 2783 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇𝑥))) = (abs‘(𝑇‘((𝑦 / 2) · 𝑥))))
4121, 23, 25, 28, 40nmcexi 30289 1 (normfn𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  abscabs 14873  chba 29182   · csm 29184  normcno 29186  0c0v 29187   cmv 29188  normfncnmf 29214  ContFnccnfn 29216  LinFnclf 29217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hilex 29262  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-hnorm 29231  df-hvsub 29234  df-nmfn 30108  df-cnfn 30110  df-lnfn 30111
This theorem is referenced by:  nmcfnlbi  30315  nmcfnex  30316
  Copyright terms: Public domain W3C validator