HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Structured version   Visualization version   GIF version

Theorem nmcfnexi 29828
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnexi (normfn𝑇) ∈ ℝ

Proof of Theorem nmcfnexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4 𝑇 ∈ ContFn
2 ax-hv0cl 28780 . . . 4 0 ∈ ℋ
3 1rp 12394 . . . 4 1 ∈ ℝ+
4 cnfnc 29707 . . . 4 ((𝑇 ∈ ContFn ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1457 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 28853 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6674 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5076 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcfnex.1 . . . . . . . . . . 11 𝑇 ∈ LinFn
109lnfn0i 29819 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7167 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnfnfi 29818 . . . . . . . . . . 11 𝑇: ℋ⟶ℂ
1312ffvelrni 6850 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℂ)
1413subid1d 10986 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1511, 14syl5eq 2868 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1615fveq2d 6674 . . . . . . 7 (𝑧 ∈ ℋ → (abs‘((𝑇𝑧) − (𝑇‘0))) = (abs‘(𝑇𝑧)))
1716breq1d 5076 . . . . . 6 (𝑧 ∈ ℋ → ((abs‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (abs‘(𝑇𝑧)) < 1))
188, 17imbi12d 347 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)))
1918ralbiia 3164 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
2019rexbii 3247 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
215, 20mpbi 232 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)
22 nmfnval 29653 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
2312, 22ax-mp 5 . 2 (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < )
2412ffvelrni 6850 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℂ)
2524abscld 14796 . 2 (𝑥 ∈ ℋ → (abs‘(𝑇𝑥)) ∈ ℝ)
2610fveq2i 6673 . . 3 (abs‘(𝑇‘0)) = (abs‘0)
27 abs0 14645 . . 3 (abs‘0) = 0
2826, 27eqtri 2844 . 2 (abs‘(𝑇‘0)) = 0
29 rpcn 12400 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
309lnfnmuli 29821 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3129, 30sylan 582 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3231fveq2d 6674 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) · 𝑥))) = (abs‘((𝑦 / 2) · (𝑇𝑥))))
33 absmul 14654 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
3429, 24, 33syl2an 597 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
35 rpre 12398 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
36 rpge0 12403 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3735, 36absidd 14782 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3837adantr 483 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3938oveq1d 7171 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))) = ((𝑦 / 2) · (abs‘(𝑇𝑥))))
4032, 34, 393eqtrrd 2861 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇𝑥))) = (abs‘(𝑇‘((𝑦 / 2) · 𝑥))))
4121, 23, 25, 28, 40nmcexi 29803 1 (normfn𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  +crp 12390  abscabs 14593  chba 28696   · csm 28698  normcno 28700  0c0v 28701   cmv 28702  normfncnmf 28728  ContFnccnfn 28730  LinFnclf 28731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-hilex 28776  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783  ax-hvmulass 28784  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-hnorm 28745  df-hvsub 28748  df-nmfn 29622  df-cnfn 29624  df-lnfn 29625
This theorem is referenced by:  nmcfnlbi  29829  nmcfnex  29830
  Copyright terms: Public domain W3C validator