Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmcopexi | Structured version Visualization version GIF version |
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcopex.1 | ⊢ 𝑇 ∈ LinOp |
nmcopex.2 | ⊢ 𝑇 ∈ ContOp |
Ref | Expression |
---|---|
nmcopexi | ⊢ (normop‘𝑇) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcopex.2 | . . . 4 ⊢ 𝑇 ∈ ContOp | |
2 | ax-hv0cl 29266 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
3 | 1rp 12663 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | cnopc 30176 | . . . 4 ⊢ ((𝑇 ∈ ContOp ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1)) | |
5 | 1, 2, 3, 4 | mp3an 1459 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) |
6 | hvsub0 29339 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
7 | 6 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
8 | 7 | breq1d 5080 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
9 | nmcopex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinOp | |
10 | 9 | lnop0i 30233 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0ℎ |
11 | 10 | oveq2i 7266 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = ((𝑇‘𝑧) −ℎ 0ℎ) |
12 | 9 | lnopfi 30232 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ ℋ |
13 | 12 | ffvelrni 6942 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
14 | hvsub0 29339 | . . . . . . . . . 10 ⊢ ((𝑇‘𝑧) ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) |
16 | 11, 15 | syl5eq 2791 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
17 | 16 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) = (normℎ‘(𝑇‘𝑧))) |
18 | 17 | breq1d 5080 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1 ↔ (normℎ‘(𝑇‘𝑧)) < 1)) |
19 | 8, 18 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1))) |
20 | 19 | ralbiia 3089 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
21 | 20 | rexbii 3177 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
22 | 5, 21 | mpbi 229 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1) |
23 | nmopval 30119 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < )) | |
24 | 12, 23 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < ) |
25 | 12 | ffvelrni 6942 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
26 | normcl 29388 | . . 3 ⊢ ((𝑇‘𝑥) ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) | |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝑥 ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
28 | 10 | fveq2i 6759 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘0ℎ) |
29 | norm0 29391 | . . 3 ⊢ (normℎ‘0ℎ) = 0 | |
30 | 28, 29 | eqtri 2766 | . 2 ⊢ (normℎ‘(𝑇‘0ℎ)) = 0 |
31 | rpcn 12669 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
32 | 9 | lnopmuli 30235 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
33 | 31, 32 | sylan 579 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
34 | 33 | fveq2d 6760 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥)))) |
35 | norm-iii 29403 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) | |
36 | 31, 25, 35 | syl2an 595 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) |
37 | rpre 12667 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
38 | rpge0 12672 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
39 | 37, 38 | absidd 15062 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
40 | 39 | adantr 480 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
41 | 40 | oveq1d 7270 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥))) = ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥)))) |
42 | 34, 36, 41 | 3eqtrrd 2783 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥))) = (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
43 | 22, 24, 27, 30, 42 | nmcexi 30289 | 1 ⊢ (normop‘𝑇) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 / cdiv 11562 2c2 11958 ℝ+crp 12659 abscabs 14873 ℋchba 29182 ·ℎ csm 29184 normℎcno 29186 0ℎc0v 29187 −ℎ cmv 29188 normopcnop 29208 ContOpccop 29209 LinOpclo 29210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-hnorm 29231 df-hvsub 29234 df-nmop 30102 df-cnop 30103 df-lnop 30104 |
This theorem is referenced by: nmcoplbi 30291 nmcopex 30292 cnlnadjlem2 30331 cnlnadjlem7 30336 cnlnadjlem8 30337 |
Copyright terms: Public domain | W3C validator |