HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopexi Structured version   Visualization version   GIF version

Theorem nmcopexi 31999
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ContOp
Assertion
Ref Expression
nmcopexi (normop𝑇) ∈ ℝ

Proof of Theorem nmcopexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcopex.2 . . . 4 𝑇 ∈ ContOp
2 ax-hv0cl 30975 . . . 4 0 ∈ ℋ
3 1rp 12889 . . . 4 1 ∈ ℝ+
4 cnopc 31885 . . . 4 ((𝑇 ∈ ContOp ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1463 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 31048 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6821 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5096 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcopex.1 . . . . . . . . . . 11 𝑇 ∈ LinOp
109lnop0i 31942 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7352 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnopfi 31941 . . . . . . . . . . 11 𝑇: ℋ⟶ ℋ
1312ffvelcdmi 7011 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
14 hvsub0 31048 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1513, 14syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1611, 15eqtrid 2778 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1716fveq2d 6821 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘((𝑇𝑧) − (𝑇‘0))) = (norm‘(𝑇𝑧)))
1817breq1d 5096 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (norm‘(𝑇𝑧)) < 1))
198, 18imbi12d 344 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)))
2019ralbiia 3076 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
2120rexbii 3079 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
225, 21mpbi 230 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)
23 nmopval 31828 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
2412, 23ax-mp 5 . 2 (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < )
2512ffvelcdmi 7011 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
26 normcl 31097 . . 3 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2725, 26syl 17 . 2 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2810fveq2i 6820 . . 3 (norm‘(𝑇‘0)) = (norm‘0)
29 norm0 31100 . . 3 (norm‘0) = 0
3028, 29eqtri 2754 . 2 (norm‘(𝑇‘0)) = 0
31 rpcn 12896 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
329lnopmuli 31944 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3331, 32sylan 580 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3433fveq2d 6821 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘(𝑇‘((𝑦 / 2) · 𝑥))) = (norm‘((𝑦 / 2) · (𝑇𝑥))))
35 norm-iii 31112 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
3631, 25, 35syl2an 596 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
37 rpre 12894 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
38 rpge0 12899 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3937, 38absidd 15325 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4039adantr 480 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4140oveq1d 7356 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))) = ((𝑦 / 2) · (norm‘(𝑇𝑥))))
4234, 36, 413eqtrrd 2771 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm‘(𝑇𝑥))) = (norm‘(𝑇‘((𝑦 / 2) · 𝑥))))
4322, 24, 27, 30, 42nmcexi 31998 1 (normop𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056   class class class wbr 5086  wf 6472  cfv 6476  (class class class)co 7341  supcsup 9319  cc 10999  cr 11000  0cc0 11001  1c1 11002   · cmul 11006  *cxr 11140   < clt 11141  cle 11142   / cdiv 11769  2c2 12175  +crp 12885  abscabs 15136  chba 30891   · csm 30893  normcno 30895  0c0v 30896   cmv 30897  normopcnop 30917  ContOpccop 30918  LinOpclo 30919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-hilex 30971  ax-hfvadd 30972  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr2 30981  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his3 31056  ax-his4 31057
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-hnorm 30940  df-hvsub 30943  df-nmop 31811  df-cnop 31812  df-lnop 31813
This theorem is referenced by:  nmcoplbi  32000  nmcopex  32001  cnlnadjlem2  32040  cnlnadjlem7  32045  cnlnadjlem8  32046
  Copyright terms: Public domain W3C validator