HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopexi Structured version   Visualization version   GIF version

Theorem nmcopexi 32047
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ContOp
Assertion
Ref Expression
nmcopexi (normop𝑇) ∈ ℝ

Proof of Theorem nmcopexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcopex.2 . . . 4 𝑇 ∈ ContOp
2 ax-hv0cl 31023 . . . 4 0 ∈ ℋ
3 1rp 13039 . . . 4 1 ∈ ℝ+
4 cnopc 31933 . . . 4 ((𝑇 ∈ ContOp ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1462 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 31096 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6909 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5152 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcopex.1 . . . . . . . . . . 11 𝑇 ∈ LinOp
109lnop0i 31990 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7443 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnopfi 31989 . . . . . . . . . . 11 𝑇: ℋ⟶ ℋ
1312ffvelcdmi 7102 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
14 hvsub0 31096 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1513, 14syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1611, 15eqtrid 2788 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1716fveq2d 6909 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘((𝑇𝑧) − (𝑇‘0))) = (norm‘(𝑇𝑧)))
1817breq1d 5152 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (norm‘(𝑇𝑧)) < 1))
198, 18imbi12d 344 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)))
2019ralbiia 3090 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
2120rexbii 3093 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
225, 21mpbi 230 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)
23 nmopval 31876 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
2412, 23ax-mp 5 . 2 (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < )
2512ffvelcdmi 7102 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
26 normcl 31145 . . 3 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2725, 26syl 17 . 2 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2810fveq2i 6908 . . 3 (norm‘(𝑇‘0)) = (norm‘0)
29 norm0 31148 . . 3 (norm‘0) = 0
3028, 29eqtri 2764 . 2 (norm‘(𝑇‘0)) = 0
31 rpcn 13046 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
329lnopmuli 31992 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3331, 32sylan 580 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3433fveq2d 6909 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘(𝑇‘((𝑦 / 2) · 𝑥))) = (norm‘((𝑦 / 2) · (𝑇𝑥))))
35 norm-iii 31160 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
3631, 25, 35syl2an 596 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
37 rpre 13044 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
38 rpge0 13049 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3937, 38absidd 15462 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4039adantr 480 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4140oveq1d 7447 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))) = ((𝑦 / 2) · (norm‘(𝑇𝑥))))
4234, 36, 413eqtrrd 2781 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm‘(𝑇𝑥))) = (norm‘(𝑇‘((𝑦 / 2) · 𝑥))))
4322, 24, 27, 30, 42nmcexi 32046 1 (normop𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  wrex 3069   class class class wbr 5142  wf 6556  cfv 6560  (class class class)co 7432  supcsup 9481  cc 11154  cr 11155  0cc0 11156  1c1 11157   · cmul 11161  *cxr 11295   < clt 11296  cle 11297   / cdiv 11921  2c2 12322  +crp 13035  abscabs 15274  chba 30939   · csm 30941  normcno 30943  0c0v 30944   cmv 30945  normopcnop 30965  ContOpccop 30966  LinOpclo 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-hilex 31019  ax-hfvadd 31020  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvmulass 31027  ax-hvdistr2 31029  ax-hvmul0 31030  ax-hfi 31099  ax-his1 31102  ax-his3 31104  ax-his4 31105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-hnorm 30988  df-hvsub 30991  df-nmop 31859  df-cnop 31860  df-lnop 31861
This theorem is referenced by:  nmcoplbi  32048  nmcopex  32049  cnlnadjlem2  32088  cnlnadjlem7  32093  cnlnadjlem8  32094
  Copyright terms: Public domain W3C validator