![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmcopexi | Structured version Visualization version GIF version |
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcopex.1 | ⊢ 𝑇 ∈ LinOp |
nmcopex.2 | ⊢ 𝑇 ∈ ContOp |
Ref | Expression |
---|---|
nmcopexi | ⊢ (normop‘𝑇) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcopex.2 | . . . 4 ⊢ 𝑇 ∈ ContOp | |
2 | ax-hv0cl 29945 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
3 | 1rp 12919 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | cnopc 30855 | . . . 4 ⊢ ((𝑇 ∈ ContOp ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1)) | |
5 | 1, 2, 3, 4 | mp3an 1461 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) |
6 | hvsub0 30018 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
7 | 6 | fveq2d 6846 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
8 | 7 | breq1d 5115 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
9 | nmcopex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinOp | |
10 | 9 | lnop0i 30912 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0ℎ |
11 | 10 | oveq2i 7368 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = ((𝑇‘𝑧) −ℎ 0ℎ) |
12 | 9 | lnopfi 30911 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ ℋ |
13 | 12 | ffvelcdmi 7034 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
14 | hvsub0 30018 | . . . . . . . . . 10 ⊢ ((𝑇‘𝑧) ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) |
16 | 11, 15 | eqtrid 2788 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
17 | 16 | fveq2d 6846 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) = (normℎ‘(𝑇‘𝑧))) |
18 | 17 | breq1d 5115 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1 ↔ (normℎ‘(𝑇‘𝑧)) < 1)) |
19 | 8, 18 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1))) |
20 | 19 | ralbiia 3094 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
21 | 20 | rexbii 3097 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
22 | 5, 21 | mpbi 229 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1) |
23 | nmopval 30798 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < )) | |
24 | 12, 23 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < ) |
25 | 12 | ffvelcdmi 7034 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
26 | normcl 30067 | . . 3 ⊢ ((𝑇‘𝑥) ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) | |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝑥 ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
28 | 10 | fveq2i 6845 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘0ℎ) |
29 | norm0 30070 | . . 3 ⊢ (normℎ‘0ℎ) = 0 | |
30 | 28, 29 | eqtri 2764 | . 2 ⊢ (normℎ‘(𝑇‘0ℎ)) = 0 |
31 | rpcn 12925 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
32 | 9 | lnopmuli 30914 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
33 | 31, 32 | sylan 580 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
34 | 33 | fveq2d 6846 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥)))) |
35 | norm-iii 30082 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) | |
36 | 31, 25, 35 | syl2an 596 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) |
37 | rpre 12923 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
38 | rpge0 12928 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
39 | 37, 38 | absidd 15307 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
40 | 39 | adantr 481 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
41 | 40 | oveq1d 7372 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥))) = ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥)))) |
42 | 34, 36, 41 | 3eqtrrd 2781 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥))) = (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
43 | 22, 24, 27, 30, 42 | nmcexi 30968 | 1 ⊢ (normop‘𝑇) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2713 ∀wral 3064 ∃wrex 3073 class class class wbr 5105 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 supcsup 9376 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 · cmul 11056 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 / cdiv 11812 2c2 12208 ℝ+crp 12915 abscabs 15119 ℋchba 29861 ·ℎ csm 29863 normℎcno 29865 0ℎc0v 29866 −ℎ cmv 29867 normopcnop 29887 ContOpccop 29888 LinOpclo 29889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-hilex 29941 ax-hfvadd 29942 ax-hvass 29944 ax-hv0cl 29945 ax-hvaddid 29946 ax-hfvmul 29947 ax-hvmulid 29948 ax-hvmulass 29949 ax-hvdistr2 29951 ax-hvmul0 29952 ax-hfi 30021 ax-his1 30024 ax-his3 30026 ax-his4 30027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-hnorm 29910 df-hvsub 29913 df-nmop 30781 df-cnop 30782 df-lnop 30783 |
This theorem is referenced by: nmcoplbi 30970 nmcopex 30971 cnlnadjlem2 31010 cnlnadjlem7 31015 cnlnadjlem8 31016 |
Copyright terms: Public domain | W3C validator |