| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmcopexi | Structured version Visualization version GIF version | ||
| Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmcopex.1 | ⊢ 𝑇 ∈ LinOp |
| nmcopex.2 | ⊢ 𝑇 ∈ ContOp |
| Ref | Expression |
|---|---|
| nmcopexi | ⊢ (normop‘𝑇) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex.2 | . . . 4 ⊢ 𝑇 ∈ ContOp | |
| 2 | ax-hv0cl 30930 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1rp 13010 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | cnopc 31840 | . . . 4 ⊢ ((𝑇 ∈ ContOp ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) |
| 6 | hvsub0 31003 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
| 7 | 6 | fveq2d 6879 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
| 8 | 7 | breq1d 5129 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
| 9 | nmcopex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinOp | |
| 10 | 9 | lnop0i 31897 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0ℎ |
| 11 | 10 | oveq2i 7414 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = ((𝑇‘𝑧) −ℎ 0ℎ) |
| 12 | 9 | lnopfi 31896 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ ℋ |
| 13 | 12 | ffvelcdmi 7072 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
| 14 | hvsub0 31003 | . . . . . . . . . 10 ⊢ ((𝑇‘𝑧) ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) |
| 16 | 11, 15 | eqtrid 2782 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
| 17 | 16 | fveq2d 6879 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) = (normℎ‘(𝑇‘𝑧))) |
| 18 | 17 | breq1d 5129 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1 ↔ (normℎ‘(𝑇‘𝑧)) < 1)) |
| 19 | 8, 18 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1))) |
| 20 | 19 | ralbiia 3080 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
| 21 | 20 | rexbii 3083 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
| 22 | 5, 21 | mpbi 230 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1) |
| 23 | nmopval 31783 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < )) | |
| 24 | 12, 23 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < ) |
| 25 | 12 | ffvelcdmi 7072 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 26 | normcl 31052 | . . 3 ⊢ ((𝑇‘𝑥) ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) | |
| 27 | 25, 26 | syl 17 | . 2 ⊢ (𝑥 ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 28 | 10 | fveq2i 6878 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘0ℎ) |
| 29 | norm0 31055 | . . 3 ⊢ (normℎ‘0ℎ) = 0 | |
| 30 | 28, 29 | eqtri 2758 | . 2 ⊢ (normℎ‘(𝑇‘0ℎ)) = 0 |
| 31 | rpcn 13017 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
| 32 | 9 | lnopmuli 31899 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
| 33 | 31, 32 | sylan 580 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
| 34 | 33 | fveq2d 6879 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥)))) |
| 35 | norm-iii 31067 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) | |
| 36 | 31, 25, 35 | syl2an 596 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) |
| 37 | rpre 13015 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
| 38 | rpge0 13020 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
| 39 | 37, 38 | absidd 15439 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 40 | 39 | adantr 480 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 41 | 40 | oveq1d 7418 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥))) = ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥)))) |
| 42 | 34, 36, 41 | 3eqtrrd 2775 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥))) = (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
| 43 | 22, 24, 27, 30, 42 | nmcexi 31953 | 1 ⊢ (normop‘𝑇) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 supcsup 9450 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 · cmul 11132 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 / cdiv 11892 2c2 12293 ℝ+crp 13006 abscabs 15251 ℋchba 30846 ·ℎ csm 30848 normℎcno 30850 0ℎc0v 30851 −ℎ cmv 30852 normopcnop 30872 ContOpccop 30873 LinOpclo 30874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-hilex 30926 ax-hfvadd 30927 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his3 31011 ax-his4 31012 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-hnorm 30895 df-hvsub 30898 df-nmop 31766 df-cnop 31767 df-lnop 31768 |
| This theorem is referenced by: nmcoplbi 31955 nmcopex 31956 cnlnadjlem2 31995 cnlnadjlem7 32000 cnlnadjlem8 32001 |
| Copyright terms: Public domain | W3C validator |