HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopexi Structured version   Visualization version   GIF version

Theorem nmcopexi 29810
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ContOp
Assertion
Ref Expression
nmcopexi (normop𝑇) ∈ ℝ

Proof of Theorem nmcopexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcopex.2 . . . 4 𝑇 ∈ ContOp
2 ax-hv0cl 28786 . . . 4 0 ∈ ℋ
3 1rp 12381 . . . 4 1 ∈ ℝ+
4 cnopc 29696 . . . 4 ((𝑇 ∈ ContOp ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1458 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 28859 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6649 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5040 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcopex.1 . . . . . . . . . . 11 𝑇 ∈ LinOp
109lnop0i 29753 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7146 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnopfi 29752 . . . . . . . . . . 11 𝑇: ℋ⟶ ℋ
1312ffvelrni 6827 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
14 hvsub0 28859 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1513, 14syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1611, 15syl5eq 2845 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1716fveq2d 6649 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘((𝑇𝑧) − (𝑇‘0))) = (norm‘(𝑇𝑧)))
1817breq1d 5040 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (norm‘(𝑇𝑧)) < 1))
198, 18imbi12d 348 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)))
2019ralbiia 3132 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
2120rexbii 3210 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
225, 21mpbi 233 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)
23 nmopval 29639 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
2412, 23ax-mp 5 . 2 (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < )
2512ffvelrni 6827 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
26 normcl 28908 . . 3 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2725, 26syl 17 . 2 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2810fveq2i 6648 . . 3 (norm‘(𝑇‘0)) = (norm‘0)
29 norm0 28911 . . 3 (norm‘0) = 0
3028, 29eqtri 2821 . 2 (norm‘(𝑇‘0)) = 0
31 rpcn 12387 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
329lnopmuli 29755 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3331, 32sylan 583 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3433fveq2d 6649 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘(𝑇‘((𝑦 / 2) · 𝑥))) = (norm‘((𝑦 / 2) · (𝑇𝑥))))
35 norm-iii 28923 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
3631, 25, 35syl2an 598 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
37 rpre 12385 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
38 rpge0 12390 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3937, 38absidd 14774 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4039adantr 484 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4140oveq1d 7150 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))) = ((𝑦 / 2) · (norm‘(𝑇𝑥))))
4234, 36, 413eqtrrd 2838 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm‘(𝑇𝑥))) = (norm‘(𝑇‘((𝑦 / 2) · 𝑥))))
4322, 24, 27, 30, 42nmcexi 29809 1 (normop𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  2c2 11680  +crp 12377  abscabs 14585  chba 28702   · csm 28704  normcno 28706  0c0v 28707   cmv 28708  normopcnop 28728  ContOpccop 28729  LinOpclo 28730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28782  ax-hfvadd 28783  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-hnorm 28751  df-hvsub 28754  df-nmop 29622  df-cnop 29623  df-lnop 29624
This theorem is referenced by:  nmcoplbi  29811  nmcopex  29812  cnlnadjlem2  29851  cnlnadjlem7  29856  cnlnadjlem8  29857
  Copyright terms: Public domain W3C validator