| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmcopexi | Structured version Visualization version GIF version | ||
| Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmcopex.1 | ⊢ 𝑇 ∈ LinOp |
| nmcopex.2 | ⊢ 𝑇 ∈ ContOp |
| Ref | Expression |
|---|---|
| nmcopexi | ⊢ (normop‘𝑇) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex.2 | . . . 4 ⊢ 𝑇 ∈ ContOp | |
| 2 | ax-hv0cl 30975 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1rp 12889 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | cnopc 31885 | . . . 4 ⊢ ((𝑇 ∈ ContOp ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) |
| 6 | hvsub0 31048 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
| 7 | 6 | fveq2d 6821 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
| 8 | 7 | breq1d 5096 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
| 9 | nmcopex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinOp | |
| 10 | 9 | lnop0i 31942 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0ℎ |
| 11 | 10 | oveq2i 7352 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = ((𝑇‘𝑧) −ℎ 0ℎ) |
| 12 | 9 | lnopfi 31941 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ ℋ |
| 13 | 12 | ffvelcdmi 7011 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
| 14 | hvsub0 31048 | . . . . . . . . . 10 ⊢ ((𝑇‘𝑧) ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) |
| 16 | 11, 15 | eqtrid 2778 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
| 17 | 16 | fveq2d 6821 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) = (normℎ‘(𝑇‘𝑧))) |
| 18 | 17 | breq1d 5096 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1 ↔ (normℎ‘(𝑇‘𝑧)) < 1)) |
| 19 | 8, 18 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1))) |
| 20 | 19 | ralbiia 3076 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
| 21 | 20 | rexbii 3079 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
| 22 | 5, 21 | mpbi 230 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1) |
| 23 | nmopval 31828 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < )) | |
| 24 | 12, 23 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < ) |
| 25 | 12 | ffvelcdmi 7011 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 26 | normcl 31097 | . . 3 ⊢ ((𝑇‘𝑥) ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) | |
| 27 | 25, 26 | syl 17 | . 2 ⊢ (𝑥 ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 28 | 10 | fveq2i 6820 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘0ℎ) |
| 29 | norm0 31100 | . . 3 ⊢ (normℎ‘0ℎ) = 0 | |
| 30 | 28, 29 | eqtri 2754 | . 2 ⊢ (normℎ‘(𝑇‘0ℎ)) = 0 |
| 31 | rpcn 12896 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
| 32 | 9 | lnopmuli 31944 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
| 33 | 31, 32 | sylan 580 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
| 34 | 33 | fveq2d 6821 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥)))) |
| 35 | norm-iii 31112 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) | |
| 36 | 31, 25, 35 | syl2an 596 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) |
| 37 | rpre 12894 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
| 38 | rpge0 12899 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
| 39 | 37, 38 | absidd 15325 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 40 | 39 | adantr 480 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 41 | 40 | oveq1d 7356 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥))) = ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥)))) |
| 42 | 34, 36, 41 | 3eqtrrd 2771 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥))) = (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
| 43 | 22, 24, 27, 30, 42 | nmcexi 31998 | 1 ⊢ (normop‘𝑇) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 supcsup 9319 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 · cmul 11006 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 / cdiv 11769 2c2 12175 ℝ+crp 12885 abscabs 15136 ℋchba 30891 ·ℎ csm 30893 normℎcno 30895 0ℎc0v 30896 −ℎ cmv 30897 normopcnop 30917 ContOpccop 30918 LinOpclo 30919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-hilex 30971 ax-hfvadd 30972 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr2 30981 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his3 31056 ax-his4 31057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-hnorm 30940 df-hvsub 30943 df-nmop 31811 df-cnop 31812 df-lnop 31813 |
| This theorem is referenced by: nmcoplbi 32000 nmcopex 32001 cnlnadjlem2 32040 cnlnadjlem7 32045 cnlnadjlem8 32046 |
| Copyright terms: Public domain | W3C validator |