HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopexi Structured version   Visualization version   GIF version

Theorem nmcopexi 32028
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ContOp
Assertion
Ref Expression
nmcopexi (normop𝑇) ∈ ℝ

Proof of Theorem nmcopexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcopex.2 . . . 4 𝑇 ∈ ContOp
2 ax-hv0cl 31004 . . . 4 0 ∈ ℋ
3 1rp 12900 . . . 4 1 ∈ ℝ+
4 cnopc 31914 . . . 4 ((𝑇 ∈ ContOp ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1463 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 31077 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6835 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 5105 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcopex.1 . . . . . . . . . . 11 𝑇 ∈ LinOp
109lnop0i 31971 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 7366 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnopfi 31970 . . . . . . . . . . 11 𝑇: ℋ⟶ ℋ
1312ffvelcdmi 7025 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
14 hvsub0 31077 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1513, 14syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1611, 15eqtrid 2780 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1716fveq2d 6835 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘((𝑇𝑧) − (𝑇‘0))) = (norm‘(𝑇𝑧)))
1817breq1d 5105 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (norm‘(𝑇𝑧)) < 1))
198, 18imbi12d 344 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)))
2019ralbiia 3077 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
2120rexbii 3080 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (norm‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1))
225, 21mpbi 230 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (norm‘(𝑇𝑧)) < 1)
23 nmopval 31857 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < ))
2412, 23ax-mp 5 . 2 (normop𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (norm‘(𝑇𝑥)))}, ℝ*, < )
2512ffvelcdmi 7025 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
26 normcl 31126 . . 3 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2725, 26syl 17 . 2 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2810fveq2i 6834 . . 3 (norm‘(𝑇‘0)) = (norm‘0)
29 norm0 31129 . . 3 (norm‘0) = 0
3028, 29eqtri 2756 . 2 (norm‘(𝑇‘0)) = 0
31 rpcn 12907 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
329lnopmuli 31973 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3331, 32sylan 580 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3433fveq2d 6835 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘(𝑇‘((𝑦 / 2) · 𝑥))) = (norm‘((𝑦 / 2) · (𝑇𝑥))))
35 norm-iii 31141 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
3631, 25, 35syl2an 596 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (norm‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))))
37 rpre 12905 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
38 rpge0 12910 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3937, 38absidd 15337 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4039adantr 480 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
4140oveq1d 7370 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (norm‘(𝑇𝑥))) = ((𝑦 / 2) · (norm‘(𝑇𝑥))))
4234, 36, 413eqtrrd 2773 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (norm‘(𝑇𝑥))) = (norm‘(𝑇‘((𝑦 / 2) · 𝑥))))
4322, 24, 27, 30, 42nmcexi 32027 1 (normop𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  supcsup 9335  cc 11015  cr 11016  0cc0 11017  1c1 11018   · cmul 11022  *cxr 11156   < clt 11157  cle 11158   / cdiv 11785  2c2 12191  +crp 12896  abscabs 15148  chba 30920   · csm 30922  normcno 30924  0c0v 30925   cmv 30926  normopcnop 30946  ContOpccop 30947  LinOpclo 30948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-hilex 31000  ax-hfvadd 31001  ax-hvass 31003  ax-hv0cl 31004  ax-hvaddid 31005  ax-hfvmul 31006  ax-hvmulid 31007  ax-hvmulass 31008  ax-hvdistr2 31010  ax-hvmul0 31011  ax-hfi 31080  ax-his1 31083  ax-his3 31085  ax-his4 31086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-hnorm 30969  df-hvsub 30972  df-nmop 31840  df-cnop 31841  df-lnop 31842
This theorem is referenced by:  nmcoplbi  32029  nmcopex  32030  cnlnadjlem2  32069  cnlnadjlem7  32074  cnlnadjlem8  32075
  Copyright terms: Public domain W3C validator