| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmcopexi | Structured version Visualization version GIF version | ||
| Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmcopex.1 | ⊢ 𝑇 ∈ LinOp |
| nmcopex.2 | ⊢ 𝑇 ∈ ContOp |
| Ref | Expression |
|---|---|
| nmcopexi | ⊢ (normop‘𝑇) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex.2 | . . . 4 ⊢ 𝑇 ∈ ContOp | |
| 2 | ax-hv0cl 30932 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 3 | 1rp 12955 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | cnopc 31842 | . . . 4 ⊢ ((𝑇 ∈ ContOp ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | . . 3 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) |
| 6 | hvsub0 31005 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 0ℎ) = 𝑧) | |
| 7 | 6 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝑧 −ℎ 0ℎ)) = (normℎ‘𝑧)) |
| 8 | 7 | breq1d 5117 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 ↔ (normℎ‘𝑧) < 𝑦)) |
| 9 | nmcopex.1 | . . . . . . . . . . 11 ⊢ 𝑇 ∈ LinOp | |
| 10 | 9 | lnop0i 31899 | . . . . . . . . . 10 ⊢ (𝑇‘0ℎ) = 0ℎ |
| 11 | 10 | oveq2i 7398 | . . . . . . . . 9 ⊢ ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = ((𝑇‘𝑧) −ℎ 0ℎ) |
| 12 | 9 | lnopfi 31898 | . . . . . . . . . . 11 ⊢ 𝑇: ℋ⟶ ℋ |
| 13 | 12 | ffvelcdmi 7055 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
| 14 | hvsub0 31005 | . . . . . . . . . 10 ⊢ ((𝑇‘𝑧) ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ 0ℎ) = (𝑇‘𝑧)) |
| 16 | 11, 15 | eqtrid 2776 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → ((𝑇‘𝑧) −ℎ (𝑇‘0ℎ)) = (𝑇‘𝑧)) |
| 17 | 16 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) = (normℎ‘(𝑇‘𝑧))) |
| 18 | 17 | breq1d 5117 | . . . . . 6 ⊢ (𝑧 ∈ ℋ → ((normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1 ↔ (normℎ‘(𝑇‘𝑧)) < 1)) |
| 19 | 8, 18 | imbi12d 344 | . . . . 5 ⊢ (𝑧 ∈ ℋ → (((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1))) |
| 20 | 19 | ralbiia 3073 | . . . 4 ⊢ (∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
| 21 | 20 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘(𝑧 −ℎ 0ℎ)) < 𝑦 → (normℎ‘((𝑇‘𝑧) −ℎ (𝑇‘0ℎ))) < 1) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1)) |
| 22 | 5, 21 | mpbi 230 | . 2 ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (normℎ‘(𝑇‘𝑧)) < 1) |
| 23 | nmopval 31785 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < )) | |
| 24 | 12, 23 | ax-mp 5 | . 2 ⊢ (normop‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (normℎ‘(𝑇‘𝑥)))}, ℝ*, < ) |
| 25 | 12 | ffvelcdmi 7055 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 26 | normcl 31054 | . . 3 ⊢ ((𝑇‘𝑥) ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) | |
| 27 | 25, 26 | syl 17 | . 2 ⊢ (𝑥 ∈ ℋ → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 28 | 10 | fveq2i 6861 | . . 3 ⊢ (normℎ‘(𝑇‘0ℎ)) = (normℎ‘0ℎ) |
| 29 | norm0 31057 | . . 3 ⊢ (normℎ‘0ℎ) = 0 | |
| 30 | 28, 29 | eqtri 2752 | . 2 ⊢ (normℎ‘(𝑇‘0ℎ)) = 0 |
| 31 | rpcn 12962 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ) | |
| 32 | 9 | lnopmuli 31901 | . . . . 5 ⊢ (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
| 33 | 31, 32 | sylan 580 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) ·ℎ 𝑥)) = ((𝑦 / 2) ·ℎ (𝑇‘𝑥))) |
| 34 | 33 | fveq2d 6862 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥))) = (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥)))) |
| 35 | norm-iii 31069 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) | |
| 36 | 31, 25, 35 | syl2an 596 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (normℎ‘((𝑦 / 2) ·ℎ (𝑇‘𝑥))) = ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥)))) |
| 37 | rpre 12960 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ) | |
| 38 | rpge0 12965 | . . . . . 6 ⊢ ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2)) | |
| 39 | 37, 38 | absidd 15389 | . . . . 5 ⊢ ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 40 | 39 | adantr 480 | . . . 4 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2)) |
| 41 | 40 | oveq1d 7402 | . . 3 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (normℎ‘(𝑇‘𝑥))) = ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥)))) |
| 42 | 34, 36, 41 | 3eqtrrd 2769 | . 2 ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (normℎ‘(𝑇‘𝑥))) = (normℎ‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) |
| 43 | 22, 24, 27, 30, 42 | nmcexi 31955 | 1 ⊢ (normop‘𝑇) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 / cdiv 11835 2c2 12241 ℝ+crp 12951 abscabs 15200 ℋchba 30848 ·ℎ csm 30850 normℎcno 30852 0ℎc0v 30853 −ℎ cmv 30854 normopcnop 30874 ContOpccop 30875 LinOpclo 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-hilex 30928 ax-hfvadd 30929 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-hnorm 30897 df-hvsub 30900 df-nmop 31768 df-cnop 31769 df-lnop 31770 |
| This theorem is referenced by: nmcoplbi 31957 nmcopex 31958 cnlnadjlem2 31997 cnlnadjlem7 32002 cnlnadjlem8 32003 |
| Copyright terms: Public domain | W3C validator |