| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfnsetn0 | Structured version Visualization version GIF version | ||
| Description: The set in the supremum of the functional norm definition df-nmfn 31774 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfnsetn0 | ⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30932 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 2 | norm0 31057 | . . . . 5 ⊢ (normℎ‘0ℎ) = 0 | |
| 3 | 0le1 11701 | . . . . 5 ⊢ 0 ≤ 1 | |
| 4 | 2, 3 | eqbrtri 5128 | . . . 4 ⊢ (normℎ‘0ℎ) ≤ 1 |
| 5 | eqid 2729 | . . . 4 ⊢ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ)) | |
| 6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ ((normℎ‘0ℎ) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ))) |
| 7 | fveq2 6858 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
| 8 | 7 | breq1d 5117 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘0ℎ) ≤ 1)) |
| 9 | 2fveq3 6863 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (abs‘(𝑇‘𝑦)) = (abs‘(𝑇‘0ℎ))) | |
| 10 | 9 | eqeq2d 2740 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ)))) |
| 11 | 8, 10 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 0ℎ → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘0ℎ) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ))))) |
| 12 | 11 | rspcev 3588 | . . 3 ⊢ ((0ℎ ∈ ℋ ∧ ((normℎ‘0ℎ) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ)))) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)))) |
| 13 | 1, 6, 12 | mp2an 692 | . 2 ⊢ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))) |
| 14 | fvex 6871 | . . 3 ⊢ (abs‘(𝑇‘0ℎ)) ∈ V | |
| 15 | eqeq1 2733 | . . . . 5 ⊢ (𝑥 = (abs‘(𝑇‘0ℎ)) → (𝑥 = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)))) | |
| 16 | 15 | anbi2d 630 | . . . 4 ⊢ (𝑥 = (abs‘(𝑇‘0ℎ)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))))) |
| 17 | 16 | rexbidv 3157 | . . 3 ⊢ (𝑥 = (abs‘(𝑇‘0ℎ)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))))) |
| 18 | 14, 17 | elab 3646 | . 2 ⊢ ((abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)))) |
| 19 | 13, 18 | mpbir 231 | 1 ⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 ≤ cle 11209 abscabs 15200 ℋchba 30848 normℎcno 30852 0ℎc0v 30853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-hv0cl 30932 ax-hvmul0 30939 ax-hfi 31008 ax-his3 31013 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-hnorm 30897 |
| This theorem is referenced by: nmfnrepnf 31809 |
| Copyright terms: Public domain | W3C validator |