![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmfnsetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the functional norm definition df-nmfn 31775 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfnsetn0 | ⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30933 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | norm0 31058 | . . . . 5 ⊢ (normℎ‘0ℎ) = 0 | |
3 | 0le1 11778 | . . . . 5 ⊢ 0 ≤ 1 | |
4 | 2, 3 | eqbrtri 5166 | . . . 4 ⊢ (normℎ‘0ℎ) ≤ 1 |
5 | eqid 2726 | . . . 4 ⊢ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ)) | |
6 | 4, 5 | pm3.2i 469 | . . 3 ⊢ ((normℎ‘0ℎ) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ))) |
7 | fveq2 6893 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (normℎ‘𝑦) = (normℎ‘0ℎ)) | |
8 | 7 | breq1d 5155 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘0ℎ) ≤ 1)) |
9 | 2fveq3 6898 | . . . . . 6 ⊢ (𝑦 = 0ℎ → (abs‘(𝑇‘𝑦)) = (abs‘(𝑇‘0ℎ))) | |
10 | 9 | eqeq2d 2737 | . . . . 5 ⊢ (𝑦 = 0ℎ → ((abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ)))) |
11 | 8, 10 | anbi12d 630 | . . . 4 ⊢ (𝑦 = 0ℎ → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘0ℎ) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ))))) |
12 | 11 | rspcev 3607 | . . 3 ⊢ ((0ℎ ∈ ℋ ∧ ((normℎ‘0ℎ) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘0ℎ)))) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)))) |
13 | 1, 6, 12 | mp2an 690 | . 2 ⊢ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))) |
14 | fvex 6906 | . . 3 ⊢ (abs‘(𝑇‘0ℎ)) ∈ V | |
15 | eqeq1 2730 | . . . . 5 ⊢ (𝑥 = (abs‘(𝑇‘0ℎ)) → (𝑥 = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)))) | |
16 | 15 | anbi2d 628 | . . . 4 ⊢ (𝑥 = (abs‘(𝑇‘0ℎ)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3169 | . . 3 ⊢ (𝑥 = (abs‘(𝑇‘0ℎ)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3665 | . 2 ⊢ ((abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘0ℎ)) = (abs‘(𝑇‘𝑦)))) |
19 | 13, 18 | mpbir 230 | 1 ⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 class class class wbr 5145 ‘cfv 6546 0cc0 11149 1c1 11150 ≤ cle 11290 abscabs 15234 ℋchba 30849 normℎcno 30853 0ℎc0v 30854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-hv0cl 30933 ax-hvmul0 30940 ax-hfi 31009 ax-his3 31014 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-hnorm 30898 |
This theorem is referenced by: nmfnrepnf 31810 |
Copyright terms: Public domain | W3C validator |