HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopge0 Structured version   Visualization version   GIF version

Theorem nmopge0 31840
Description: The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopge0 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))

Proof of Theorem nmopge0
StepHypRef Expression
1 ax-hv0cl 30932 . . . 4 0 ∈ ℋ
2 ffvelcdm 7053 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 0 ∈ ℋ) → (𝑇‘0) ∈ ℋ)
31, 2mpan2 691 . . 3 (𝑇: ℋ⟶ ℋ → (𝑇‘0) ∈ ℋ)
4 normge0 31055 . . 3 ((𝑇‘0) ∈ ℋ → 0 ≤ (norm‘(𝑇‘0)))
53, 4syl 17 . 2 (𝑇: ℋ⟶ ℋ → 0 ≤ (norm‘(𝑇‘0)))
6 norm0 31057 . . . 4 (norm‘0) = 0
7 0le1 11701 . . . 4 0 ≤ 1
86, 7eqbrtri 5128 . . 3 (norm‘0) ≤ 1
9 nmoplb 31836 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 0 ∈ ℋ ∧ (norm‘0) ≤ 1) → (norm‘(𝑇‘0)) ≤ (normop𝑇))
101, 8, 9mp3an23 1455 . 2 (𝑇: ℋ⟶ ℋ → (norm‘(𝑇‘0)) ≤ (normop𝑇))
11 normcl 31054 . . . . 5 ((𝑇‘0) ∈ ℋ → (norm‘(𝑇‘0)) ∈ ℝ)
123, 11syl 17 . . . 4 (𝑇: ℋ⟶ ℋ → (norm‘(𝑇‘0)) ∈ ℝ)
1312rexrd 11224 . . 3 (𝑇: ℋ⟶ ℋ → (norm‘(𝑇‘0)) ∈ ℝ*)
14 nmopxr 31795 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) ∈ ℝ*)
15 0xr 11221 . . . 4 0 ∈ ℝ*
16 xrletr 13118 . . . 4 ((0 ∈ ℝ* ∧ (norm‘(𝑇‘0)) ∈ ℝ* ∧ (normop𝑇) ∈ ℝ*) → ((0 ≤ (norm‘(𝑇‘0)) ∧ (norm‘(𝑇‘0)) ≤ (normop𝑇)) → 0 ≤ (normop𝑇)))
1715, 16mp3an1 1450 . . 3 (((norm‘(𝑇‘0)) ∈ ℝ* ∧ (normop𝑇) ∈ ℝ*) → ((0 ≤ (norm‘(𝑇‘0)) ∧ (norm‘(𝑇‘0)) ≤ (normop𝑇)) → 0 ≤ (normop𝑇)))
1813, 14, 17syl2anc 584 . 2 (𝑇: ℋ⟶ ℋ → ((0 ≤ (norm‘(𝑇‘0)) ∧ (norm‘(𝑇‘0)) ≤ (normop𝑇)) → 0 ≤ (normop𝑇)))
195, 10, 18mp2and 699 1 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5107  wf 6507  cfv 6511  cr 11067  0cc0 11068  1c1 11069  *cxr 11207  cle 11209  chba 30848  normcno 30852  0c0v 30853  normopcnop 30874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-grpo 30422  df-gid 30423  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-nmop 31768
This theorem is referenced by:  nmopgt0  31841  nmophmi  31960  cnlnadjlem7  32002  nmopadjlem  32018  nmopcoadji  32030  opsqrlem1  32069
  Copyright terms: Public domain W3C validator