HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopge0 Structured version   Visualization version   GIF version

Theorem nmopge0 31432
Description: The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopge0 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))

Proof of Theorem nmopge0
StepHypRef Expression
1 ax-hv0cl 30524 . . . 4 0 ∈ ℋ
2 ffvelcdm 7083 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 0 ∈ ℋ) → (𝑇‘0) ∈ ℋ)
31, 2mpan2 688 . . 3 (𝑇: ℋ⟶ ℋ → (𝑇‘0) ∈ ℋ)
4 normge0 30647 . . 3 ((𝑇‘0) ∈ ℋ → 0 ≤ (norm‘(𝑇‘0)))
53, 4syl 17 . 2 (𝑇: ℋ⟶ ℋ → 0 ≤ (norm‘(𝑇‘0)))
6 norm0 30649 . . . 4 (norm‘0) = 0
7 0le1 11742 . . . 4 0 ≤ 1
86, 7eqbrtri 5169 . . 3 (norm‘0) ≤ 1
9 nmoplb 31428 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 0 ∈ ℋ ∧ (norm‘0) ≤ 1) → (norm‘(𝑇‘0)) ≤ (normop𝑇))
101, 8, 9mp3an23 1452 . 2 (𝑇: ℋ⟶ ℋ → (norm‘(𝑇‘0)) ≤ (normop𝑇))
11 normcl 30646 . . . . 5 ((𝑇‘0) ∈ ℋ → (norm‘(𝑇‘0)) ∈ ℝ)
123, 11syl 17 . . . 4 (𝑇: ℋ⟶ ℋ → (norm‘(𝑇‘0)) ∈ ℝ)
1312rexrd 11269 . . 3 (𝑇: ℋ⟶ ℋ → (norm‘(𝑇‘0)) ∈ ℝ*)
14 nmopxr 31387 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) ∈ ℝ*)
15 0xr 11266 . . . 4 0 ∈ ℝ*
16 xrletr 13142 . . . 4 ((0 ∈ ℝ* ∧ (norm‘(𝑇‘0)) ∈ ℝ* ∧ (normop𝑇) ∈ ℝ*) → ((0 ≤ (norm‘(𝑇‘0)) ∧ (norm‘(𝑇‘0)) ≤ (normop𝑇)) → 0 ≤ (normop𝑇)))
1715, 16mp3an1 1447 . . 3 (((norm‘(𝑇‘0)) ∈ ℝ* ∧ (normop𝑇) ∈ ℝ*) → ((0 ≤ (norm‘(𝑇‘0)) ∧ (norm‘(𝑇‘0)) ≤ (normop𝑇)) → 0 ≤ (normop𝑇)))
1813, 14, 17syl2anc 583 . 2 (𝑇: ℋ⟶ ℋ → ((0 ≤ (norm‘(𝑇‘0)) ∧ (norm‘(𝑇‘0)) ≤ (normop𝑇)) → 0 ≤ (normop𝑇)))
195, 10, 18mp2and 696 1 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105   class class class wbr 5148  wf 6539  cfv 6543  cr 11112  0cc0 11113  1c1 11114  *cxr 11252  cle 11254  chba 30440  normcno 30444  0c0v 30445  normopcnop 30466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-hilex 30520  ax-hfvadd 30521  ax-hvcom 30522  ax-hvass 30523  ax-hv0cl 30524  ax-hvaddid 30525  ax-hfvmul 30526  ax-hvmulid 30527  ax-hvmulass 30528  ax-hvdistr1 30529  ax-hvdistr2 30530  ax-hvmul0 30531  ax-hfi 30600  ax-his1 30603  ax-his2 30604  ax-his3 30605  ax-his4 30606
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-grpo 30014  df-gid 30015  df-ablo 30066  df-vc 30080  df-nv 30113  df-va 30116  df-ba 30117  df-sm 30118  df-0v 30119  df-nmcv 30121  df-hnorm 30489  df-hba 30490  df-hvsub 30492  df-nmop 31360
This theorem is referenced by:  nmopgt0  31433  nmophmi  31552  cnlnadjlem7  31594  nmopadjlem  31610  nmopcoadji  31622  opsqrlem1  31661
  Copyright terms: Public domain W3C validator