Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hlim0 | Structured version Visualization version GIF version |
Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlim0 | ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29566 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | fconst6 6709 | . . 3 ⊢ (ℕ × {0ℎ}):ℕ⟶ ℋ |
3 | ax-hilex 29562 | . . . 4 ⊢ ℋ ∈ V | |
4 | nnex 12072 | . . . 4 ⊢ ℕ ∈ V | |
5 | 3, 4 | elmap 8722 | . . 3 ⊢ ((ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) ↔ (ℕ × {0ℎ}):ℕ⟶ ℋ) |
6 | 2, 5 | mpbir 230 | . 2 ⊢ (ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) |
7 | eqid 2736 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
8 | eqid 2736 | . . . . 5 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
9 | 7, 8 | hhxmet 29738 | . . . 4 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
10 | eqid 2736 | . . . . 5 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
11 | 10 | mopntopon 23690 | . . . 4 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ)) |
12 | 9, 11 | ax-mp 5 | . . 3 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ) |
13 | 1z 12443 | . . 3 ⊢ 1 ∈ ℤ | |
14 | nnuz 12714 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
15 | 14 | lmconst 22510 | . . 3 ⊢ (((MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ) ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ) |
16 | 12, 1, 13, 15 | mp3an 1460 | . 2 ⊢ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ |
17 | 7, 8, 10 | hhlm 29762 | . . . 4 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
18 | 17 | breqi 5095 | . . 3 ⊢ ((ℕ × {0ℎ}) ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ})((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))0ℎ) |
19 | 1 | elexi 3460 | . . . 4 ⊢ 0ℎ ∈ V |
20 | 19 | brresi 5926 | . . 3 ⊢ ((ℕ × {0ℎ})((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))0ℎ ↔ ((ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) ∧ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ)) |
21 | 18, 20 | bitri 274 | . 2 ⊢ ((ℕ × {0ℎ}) ⇝𝑣 0ℎ ↔ ((ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) ∧ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ)) |
22 | 6, 16, 21 | mpbir2an 708 | 1 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2105 {csn 4572 〈cop 4578 class class class wbr 5089 × cxp 5612 ↾ cres 5616 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 ↑m cmap 8678 1c1 10965 ℕcn 12066 ℤcz 12412 ∞Metcxmet 20680 MetOpencmopn 20685 TopOnctopon 22157 ⇝𝑡clm 22475 IndMetcims 29154 ℋchba 29482 +ℎ cva 29483 ·ℎ csm 29484 normℎcno 29486 0ℎc0v 29487 ⇝𝑣 chli 29490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 ax-addf 11043 ax-mulf 11044 ax-hilex 29562 ax-hfvadd 29563 ax-hvcom 29564 ax-hvass 29565 ax-hv0cl 29566 ax-hvaddid 29567 ax-hfvmul 29568 ax-hvmulid 29569 ax-hvmulass 29570 ax-hvdistr1 29571 ax-hvdistr2 29572 ax-hvmul0 29573 ax-hfi 29642 ax-his1 29645 ax-his2 29646 ax-his3 29647 ax-his4 29648 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-n0 12327 df-z 12413 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-topgen 17243 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-top 22141 df-topon 22158 df-bases 22194 df-lm 22478 df-grpo 29056 df-gid 29057 df-ginv 29058 df-gdiv 29059 df-ablo 29108 df-vc 29122 df-nv 29155 df-va 29158 df-ba 29159 df-sm 29160 df-0v 29161 df-vs 29162 df-nmcv 29163 df-ims 29164 df-hnorm 29531 df-hvsub 29534 df-hlim 29535 |
This theorem is referenced by: hsn0elch 29811 |
Copyright terms: Public domain | W3C validator |