Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hlim0 | Structured version Visualization version GIF version |
Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlim0 | ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29084 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | fconst6 6609 | . . 3 ⊢ (ℕ × {0ℎ}):ℕ⟶ ℋ |
3 | ax-hilex 29080 | . . . 4 ⊢ ℋ ∈ V | |
4 | nnex 11836 | . . . 4 ⊢ ℕ ∈ V | |
5 | 3, 4 | elmap 8552 | . . 3 ⊢ ((ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) ↔ (ℕ × {0ℎ}):ℕ⟶ ℋ) |
6 | 2, 5 | mpbir 234 | . 2 ⊢ (ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) |
7 | eqid 2737 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
8 | eqid 2737 | . . . . 5 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
9 | 7, 8 | hhxmet 29256 | . . . 4 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
10 | eqid 2737 | . . . . 5 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
11 | 10 | mopntopon 23337 | . . . 4 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ)) |
12 | 9, 11 | ax-mp 5 | . . 3 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ) |
13 | 1z 12207 | . . 3 ⊢ 1 ∈ ℤ | |
14 | nnuz 12477 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
15 | 14 | lmconst 22158 | . . 3 ⊢ (((MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ (TopOn‘ ℋ) ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ) |
16 | 12, 1, 13, 15 | mp3an 1463 | . 2 ⊢ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ |
17 | 7, 8, 10 | hhlm 29280 | . . . 4 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
18 | 17 | breqi 5059 | . . 3 ⊢ ((ℕ × {0ℎ}) ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ})((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))0ℎ) |
19 | 1 | elexi 3427 | . . . 4 ⊢ 0ℎ ∈ V |
20 | 19 | brresi 5860 | . . 3 ⊢ ((ℕ × {0ℎ})((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))0ℎ ↔ ((ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) ∧ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ)) |
21 | 18, 20 | bitri 278 | . 2 ⊢ ((ℕ × {0ℎ}) ⇝𝑣 0ℎ ↔ ((ℕ × {0ℎ}) ∈ ( ℋ ↑m ℕ) ∧ (ℕ × {0ℎ})(⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))0ℎ)) |
22 | 6, 16, 21 | mpbir2an 711 | 1 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∈ wcel 2110 {csn 4541 〈cop 4547 class class class wbr 5053 × cxp 5549 ↾ cres 5553 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 1c1 10730 ℕcn 11830 ℤcz 12176 ∞Metcxmet 20348 MetOpencmopn 20353 TopOnctopon 21807 ⇝𝑡clm 22123 IndMetcims 28672 ℋchba 29000 +ℎ cva 29001 ·ℎ csm 29002 normℎcno 29004 0ℎc0v 29005 ⇝𝑣 chli 29008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 ax-hilex 29080 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvmulass 29088 ax-hvdistr1 29089 ax-hvdistr2 29090 ax-hvmul0 29091 ax-hfi 29160 ax-his1 29163 ax-his2 29164 ax-his3 29165 ax-his4 29166 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-topgen 16948 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-top 21791 df-topon 21808 df-bases 21843 df-lm 22126 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-vs 28680 df-nmcv 28681 df-ims 28682 df-hnorm 29049 df-hvsub 29052 df-hlim 29053 |
This theorem is referenced by: hsn0elch 29329 |
Copyright terms: Public domain | W3C validator |