Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemgval | Structured version Visualization version GIF version |
Description: Expand the value of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
Ref | Expression |
---|---|
ballotlemgval | ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4137 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∩ 𝑢) = (𝑣 ∩ 𝑈)) | |
2 | 1 | fveq2d 6760 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∩ 𝑢)) = (♯‘(𝑣 ∩ 𝑈))) |
3 | difeq2 4047 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∖ 𝑢) = (𝑣 ∖ 𝑈)) | |
4 | 3 | fveq2d 6760 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∖ 𝑢)) = (♯‘(𝑣 ∖ 𝑈))) |
5 | 2, 4 | oveq12d 7273 | . 2 ⊢ (𝑢 = 𝑈 → ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢))) = ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈)))) |
6 | ineq1 4136 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑈) = (𝑉 ∩ 𝑈)) | |
7 | 6 | fveq2d 6760 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∩ 𝑈)) = (♯‘(𝑉 ∩ 𝑈))) |
8 | difeq1 4046 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∖ 𝑈) = (𝑉 ∖ 𝑈)) | |
9 | 8 | fveq2d 6760 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∖ 𝑈)) = (♯‘(𝑉 ∖ 𝑈))) |
10 | 7, 9 | oveq12d 7273 | . 2 ⊢ (𝑣 = 𝑉 → ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈))) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
11 | ballotlemg | . 2 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
12 | ovex 7288 | . 2 ⊢ ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈))) ∈ V | |
13 | 5, 10, 11, 12 | ovmpo 7411 | 1 ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ifcif 4456 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 infcinf 9130 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 ℤcz 12249 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: ballotlemgun 32391 ballotlemfg 32392 ballotlemfrc 32393 |
Copyright terms: Public domain | W3C validator |