| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemgval | Structured version Visualization version GIF version | ||
| Description: Expand the value of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
| Ref | Expression |
|---|---|
| ballotlemgval | ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 4194 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∩ 𝑢) = (𝑣 ∩ 𝑈)) | |
| 2 | 1 | fveq2d 6885 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∩ 𝑢)) = (♯‘(𝑣 ∩ 𝑈))) |
| 3 | difeq2 4100 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∖ 𝑢) = (𝑣 ∖ 𝑈)) | |
| 4 | 3 | fveq2d 6885 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∖ 𝑢)) = (♯‘(𝑣 ∖ 𝑈))) |
| 5 | 2, 4 | oveq12d 7428 | . 2 ⊢ (𝑢 = 𝑈 → ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢))) = ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈)))) |
| 6 | ineq1 4193 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑈) = (𝑉 ∩ 𝑈)) | |
| 7 | 6 | fveq2d 6885 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∩ 𝑈)) = (♯‘(𝑉 ∩ 𝑈))) |
| 8 | difeq1 4099 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∖ 𝑈) = (𝑉 ∖ 𝑈)) | |
| 9 | 8 | fveq2d 6885 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∖ 𝑈)) = (♯‘(𝑉 ∖ 𝑈))) |
| 10 | 7, 9 | oveq12d 7428 | . 2 ⊢ (𝑣 = 𝑉 → ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈))) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
| 11 | ballotlemg | . 2 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
| 12 | ovex 7443 | . 2 ⊢ ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈))) ∈ V | |
| 13 | 5, 10, 11, 12 | ovmpo 7572 | 1 ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ∖ cdif 3928 ∩ cin 3930 ifcif 4505 𝒫 cpw 4580 class class class wbr 5124 ↦ cmpt 5206 “ cima 5662 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 Fincfn 8964 infcinf 9458 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℕcn 12245 ℤcz 12593 ...cfz 13529 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: ballotlemgun 34562 ballotlemfg 34563 ballotlemfrc 34564 |
| Copyright terms: Public domain | W3C validator |