Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgval Structured version   Visualization version   GIF version

Theorem ballotlemgval 31774
Description: Expand the value of . (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemgval ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐼   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑢,𝑈,𝑣   𝑢,𝑉,𝑣
Allowed substitution hints:   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝑈(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)   𝑉(𝑥,𝑖,𝑘,𝑐)

Proof of Theorem ballotlemgval
StepHypRef Expression
1 ineq2 4181 . . . 4 (𝑢 = 𝑈 → (𝑣𝑢) = (𝑣𝑈))
21fveq2d 6667 . . 3 (𝑢 = 𝑈 → (♯‘(𝑣𝑢)) = (♯‘(𝑣𝑈)))
3 difeq2 4091 . . . 4 (𝑢 = 𝑈 → (𝑣𝑢) = (𝑣𝑈))
43fveq2d 6667 . . 3 (𝑢 = 𝑈 → (♯‘(𝑣𝑢)) = (♯‘(𝑣𝑈)))
52, 4oveq12d 7166 . 2 (𝑢 = 𝑈 → ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))) = ((♯‘(𝑣𝑈)) − (♯‘(𝑣𝑈))))
6 ineq1 4179 . . . 4 (𝑣 = 𝑉 → (𝑣𝑈) = (𝑉𝑈))
76fveq2d 6667 . . 3 (𝑣 = 𝑉 → (♯‘(𝑣𝑈)) = (♯‘(𝑉𝑈)))
8 difeq1 4090 . . . 4 (𝑣 = 𝑉 → (𝑣𝑈) = (𝑉𝑈))
98fveq2d 6667 . . 3 (𝑣 = 𝑉 → (♯‘(𝑣𝑈)) = (♯‘(𝑉𝑈)))
107, 9oveq12d 7166 . 2 (𝑣 = 𝑉 → ((♯‘(𝑣𝑈)) − (♯‘(𝑣𝑈))) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
11 ballotlemg . 2 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
12 ovex 7181 . 2 ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) ∈ V
135, 10, 11, 12ovmpo 7302 1 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wral 3136  {crab 3140  cdif 3931  cin 3933  ifcif 4465  𝒫 cpw 4537   class class class wbr 5057  cmpt 5137  cima 5551  cfv 6348  (class class class)co 7148  cmpo 7150  Fincfn 8501  infcinf 8897  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  cz 11973  ...cfz 12884  chash 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153
This theorem is referenced by:  ballotlemgun  31775  ballotlemfg  31776  ballotlemfrc  31777
  Copyright terms: Public domain W3C validator