Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgval Structured version   Visualization version   GIF version

Theorem ballotlemgval 33517
Description: Expand the value of . (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemgval ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐼   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑢,𝑈,𝑣   𝑢,𝑉,𝑣
Allowed substitution hints:   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝑈(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)   𝑉(𝑥,𝑖,𝑘,𝑐)

Proof of Theorem ballotlemgval
StepHypRef Expression
1 ineq2 4206 . . . 4 (𝑢 = 𝑈 → (𝑣𝑢) = (𝑣𝑈))
21fveq2d 6895 . . 3 (𝑢 = 𝑈 → (♯‘(𝑣𝑢)) = (♯‘(𝑣𝑈)))
3 difeq2 4116 . . . 4 (𝑢 = 𝑈 → (𝑣𝑢) = (𝑣𝑈))
43fveq2d 6895 . . 3 (𝑢 = 𝑈 → (♯‘(𝑣𝑢)) = (♯‘(𝑣𝑈)))
52, 4oveq12d 7426 . 2 (𝑢 = 𝑈 → ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))) = ((♯‘(𝑣𝑈)) − (♯‘(𝑣𝑈))))
6 ineq1 4205 . . . 4 (𝑣 = 𝑉 → (𝑣𝑈) = (𝑉𝑈))
76fveq2d 6895 . . 3 (𝑣 = 𝑉 → (♯‘(𝑣𝑈)) = (♯‘(𝑉𝑈)))
8 difeq1 4115 . . . 4 (𝑣 = 𝑉 → (𝑣𝑈) = (𝑉𝑈))
98fveq2d 6895 . . 3 (𝑣 = 𝑉 → (♯‘(𝑣𝑈)) = (♯‘(𝑉𝑈)))
107, 9oveq12d 7426 . 2 (𝑣 = 𝑉 → ((♯‘(𝑣𝑈)) − (♯‘(𝑣𝑈))) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
11 ballotlemg . 2 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
12 ovex 7441 . 2 ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) ∈ V
135, 10, 11, 12ovmpo 7567 1 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  {crab 3432  cdif 3945  cin 3947  ifcif 4528  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  cima 5679  cfv 6543  (class class class)co 7408  cmpo 7410  Fincfn 8938  infcinf 9435  cr 11108  0cc0 11109  1c1 11110   + caddc 11112   < clt 11247  cle 11248  cmin 11443   / cdiv 11870  cn 12211  cz 12557  ...cfz 13483  chash 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413
This theorem is referenced by:  ballotlemgun  33518  ballotlemfg  33519  ballotlemfrc  33520
  Copyright terms: Public domain W3C validator