Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemgval | Structured version Visualization version GIF version |
Description: Expand the value of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
Ref | Expression |
---|---|
ballotlemgval | ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4140 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∩ 𝑢) = (𝑣 ∩ 𝑈)) | |
2 | 1 | fveq2d 6778 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∩ 𝑢)) = (♯‘(𝑣 ∩ 𝑈))) |
3 | difeq2 4051 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∖ 𝑢) = (𝑣 ∖ 𝑈)) | |
4 | 3 | fveq2d 6778 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∖ 𝑢)) = (♯‘(𝑣 ∖ 𝑈))) |
5 | 2, 4 | oveq12d 7293 | . 2 ⊢ (𝑢 = 𝑈 → ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢))) = ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈)))) |
6 | ineq1 4139 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑈) = (𝑉 ∩ 𝑈)) | |
7 | 6 | fveq2d 6778 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∩ 𝑈)) = (♯‘(𝑉 ∩ 𝑈))) |
8 | difeq1 4050 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∖ 𝑈) = (𝑉 ∖ 𝑈)) | |
9 | 8 | fveq2d 6778 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∖ 𝑈)) = (♯‘(𝑉 ∖ 𝑈))) |
10 | 7, 9 | oveq12d 7293 | . 2 ⊢ (𝑣 = 𝑉 → ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈))) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
11 | ballotlemg | . 2 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
12 | ovex 7308 | . 2 ⊢ ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈))) ∈ V | |
13 | 5, 10, 11, 12 | ovmpo 7433 | 1 ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ifcif 4459 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Fincfn 8733 infcinf 9200 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: ballotlemgun 32491 ballotlemfg 32492 ballotlemfrc 32493 |
Copyright terms: Public domain | W3C validator |