![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemgval | Structured version Visualization version GIF version |
Description: Expand the value of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
Ref | Expression |
---|---|
ballotlemgval | ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4208 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∩ 𝑢) = (𝑣 ∩ 𝑈)) | |
2 | 1 | fveq2d 6906 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∩ 𝑢)) = (♯‘(𝑣 ∩ 𝑈))) |
3 | difeq2 4116 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∖ 𝑢) = (𝑣 ∖ 𝑈)) | |
4 | 3 | fveq2d 6906 | . . 3 ⊢ (𝑢 = 𝑈 → (♯‘(𝑣 ∖ 𝑢)) = (♯‘(𝑣 ∖ 𝑈))) |
5 | 2, 4 | oveq12d 7444 | . 2 ⊢ (𝑢 = 𝑈 → ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢))) = ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈)))) |
6 | ineq1 4207 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑈) = (𝑉 ∩ 𝑈)) | |
7 | 6 | fveq2d 6906 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∩ 𝑈)) = (♯‘(𝑉 ∩ 𝑈))) |
8 | difeq1 4115 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∖ 𝑈) = (𝑉 ∖ 𝑈)) | |
9 | 8 | fveq2d 6906 | . . 3 ⊢ (𝑣 = 𝑉 → (♯‘(𝑣 ∖ 𝑈)) = (♯‘(𝑉 ∖ 𝑈))) |
10 | 7, 9 | oveq12d 7444 | . 2 ⊢ (𝑣 = 𝑉 → ((♯‘(𝑣 ∩ 𝑈)) − (♯‘(𝑣 ∖ 𝑈))) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
11 | ballotlemg | . 2 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
12 | ovex 7459 | . 2 ⊢ ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈))) ∈ V | |
13 | 5, 10, 11, 12 | ovmpo 7587 | 1 ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 {crab 3430 ∖ cdif 3946 ∩ cin 3948 ifcif 4532 𝒫 cpw 4606 class class class wbr 5152 ↦ cmpt 5235 “ cima 5685 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 Fincfn 8970 infcinf 9472 ℝcr 11145 0cc0 11146 1c1 11147 + caddc 11149 < clt 11286 ≤ cle 11287 − cmin 11482 / cdiv 11909 ℕcn 12250 ℤcz 12596 ...cfz 13524 ♯chash 14329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 |
This theorem is referenced by: ballotlemgun 34177 ballotlemfg 34178 ballotlemfrc 34179 |
Copyright terms: Public domain | W3C validator |