![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strndxid | Structured version Visualization version GIF version |
Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) (New usage is discouraged.) Use strfvnd 17163 directly with π set to (πΈβndx) if possible. |
Ref | Expression |
---|---|
strndxid.s | β’ (π β π β π) |
strndxid.e | β’ πΈ = Slot π |
strndxid.n | β’ π β β |
Ref | Expression |
---|---|
strndxid | β’ (π β (πβ(πΈβndx)) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strndxid.e | . . . 4 β’ πΈ = Slot π | |
2 | strndxid.n | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 17175 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | strndxid.s | . . 3 β’ (π β π β π) | |
5 | 3, 4 | strfvnd 17163 | . 2 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
6 | 5 | eqcomd 2734 | 1 β’ (π β (πβ(πΈβndx)) = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6553 βcn 12252 Slot cslot 17159 ndxcnx 17171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-1cn 11206 ax-addcl 11208 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-nn 12253 df-slot 17160 df-ndx 17172 |
This theorem is referenced by: estrreslem1OLD 18137 edgfndxidOLD 28833 |
Copyright terms: Public domain | W3C validator |