| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blof | Structured version Visualization version GIF version | ||
| Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| blof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| blof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| blof.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| Ref | Expression |
|---|---|
| blof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
| 2 | blof.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 3 | 1, 2 | bloln 30775 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
| 4 | blof.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | blof.2 | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 6 | 4, 5, 1 | lnof 30746 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → 𝑇:𝑋⟶𝑌) |
| 7 | 3, 6 | syld3an3 1411 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 NrmCVeccnv 30575 BaseSetcba 30577 LnOp clno 30731 BLnOp cblo 30733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-lno 30735 df-blo 30737 |
| This theorem is referenced by: nmblore 30777 nmblolbii 30790 blometi 30794 ubthlem3 30863 htthlem 30908 |
| Copyright terms: Public domain | W3C validator |