Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blof | Structured version Visualization version GIF version |
Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
blof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
blof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
blof.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
blof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
2 | blof.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
3 | 1, 2 | bloln 29047 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
4 | blof.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | blof.2 | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
6 | 4, 5, 1 | lnof 29018 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → 𝑇:𝑋⟶𝑌) |
7 | 3, 6 | syld3an3 1407 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 NrmCVeccnv 28847 BaseSetcba 28849 LnOp clno 29003 BLnOp cblo 29005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lno 29007 df-blo 29009 |
This theorem is referenced by: nmblore 29049 nmblolbii 29062 blometi 29066 ubthlem3 29135 htthlem 29180 |
Copyright terms: Public domain | W3C validator |