Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blof | Structured version Visualization version GIF version |
Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
blof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
blof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
blof.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
blof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
2 | blof.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
3 | 1, 2 | bloln 29146 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
4 | blof.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | blof.2 | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
6 | 4, 5, 1 | lnof 29117 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → 𝑇:𝑋⟶𝑌) |
7 | 3, 6 | syld3an3 1408 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 NrmCVeccnv 28946 BaseSetcba 28948 LnOp clno 29102 BLnOp cblo 29104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-lno 29106 df-blo 29108 |
This theorem is referenced by: nmblore 29148 nmblolbii 29161 blometi 29165 ubthlem3 29234 htthlem 29279 |
Copyright terms: Public domain | W3C validator |