| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blof | Structured version Visualization version GIF version | ||
| Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| blof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| blof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| blof.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| Ref | Expression |
|---|---|
| blof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
| 2 | blof.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 3 | 1, 2 | bloln 30720 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
| 4 | blof.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | blof.2 | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 6 | 4, 5, 1 | lnof 30691 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → 𝑇:𝑋⟶𝑌) |
| 7 | 3, 6 | syld3an3 1411 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 NrmCVeccnv 30520 BaseSetcba 30522 LnOp clno 30676 BLnOp cblo 30678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-lno 30680 df-blo 30682 |
| This theorem is referenced by: nmblore 30722 nmblolbii 30735 blometi 30739 ubthlem3 30808 htthlem 30853 |
| Copyright terms: Public domain | W3C validator |