MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocn2 Structured version   Visualization version   GIF version

Theorem blocn2 30737
Description: A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocn.8 𝐶 = (IndMet‘𝑈)
blocn.d 𝐷 = (IndMet‘𝑊)
blocn.j 𝐽 = (MetOpen‘𝐶)
blocn.k 𝐾 = (MetOpen‘𝐷)
blocn.5 𝐵 = (𝑈 BLnOp 𝑊)
blocn.u 𝑈 ∈ NrmCVec
blocn.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blocn2 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))

Proof of Theorem blocn2
StepHypRef Expression
1 blocn.u . . 3 𝑈 ∈ NrmCVec
2 blocn.w . . 3 𝑊 ∈ NrmCVec
3 eqid 2729 . . . 4 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
4 blocn.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
53, 4bloln 30713 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
61, 2, 5mp3an12 1453 . 2 (𝑇𝐵𝑇 ∈ (𝑈 LnOp 𝑊))
7 blocn.8 . . . 4 𝐶 = (IndMet‘𝑈)
8 blocn.d . . . 4 𝐷 = (IndMet‘𝑊)
9 blocn.j . . . 4 𝐽 = (MetOpen‘𝐶)
10 blocn.k . . . 4 𝐾 = (MetOpen‘𝐷)
117, 8, 9, 10, 4, 1, 2, 3blocn 30736 . . 3 (𝑇 ∈ (𝑈 LnOp 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵))
1211biimprd 248 . 2 (𝑇 ∈ (𝑈 LnOp 𝑊) → (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾)))
136, 12mpcom 38 1 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  MetOpencmopn 21254   Cn ccn 23111  NrmCVeccnv 30513  IndMetcims 30520   LnOp clno 30669   BLnOp cblo 30671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cnp 23115  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-lno 30673  df-nmoo 30674  df-blo 30675  df-0o 30676
This theorem is referenced by:  ubthlem1  30799  ubthlem2  30800
  Copyright terms: Public domain W3C validator