MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o Structured version   Visualization version   GIF version

Theorem mapsnf1o 8889
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
mapsnf1o ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mapsnf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
21ixpsnf1o 8888 . . 3 (𝐼𝑊𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
32adantl 481 . 2 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
4 snex 5386 . . . . 5 {𝐼} ∈ V
5 ixpconstg 8856 . . . . . 6 (({𝐼} ∈ V ∧ 𝐴𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴m {𝐼}))
65eqcomd 2735 . . . . 5 (({𝐼} ∈ V ∧ 𝐴𝑉) → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
74, 6mpan 690 . . . 4 (𝐴𝑉 → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
87adantr 480 . . 3 ((𝐴𝑉𝐼𝑊) → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
98f1oeq3d 6779 . 2 ((𝐴𝑉𝐼𝑊) → (𝐹:𝐴1-1-onto→(𝐴m {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
103, 9mpbird 257 1 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cmpt 5183   × cxp 5629  1-1-ontowf1o 6498  (class class class)co 7369  m cmap 8776  Xcixp 8847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-ixp 8848
This theorem is referenced by:  pwssnf1o  17437  mat1f1o  22398
  Copyright terms: Public domain W3C validator