MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o Structured version   Visualization version   GIF version

Theorem mapsnf1o 8935
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
mapsnf1o ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mapsnf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
21ixpsnf1o 8934 . . 3 (𝐼𝑊𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
32adantl 480 . 2 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
4 snex 5430 . . . . 5 {𝐼} ∈ V
5 ixpconstg 8902 . . . . . 6 (({𝐼} ∈ V ∧ 𝐴𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴m {𝐼}))
65eqcomd 2736 . . . . 5 (({𝐼} ∈ V ∧ 𝐴𝑉) → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
74, 6mpan 686 . . . 4 (𝐴𝑉 → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
87adantr 479 . . 3 ((𝐴𝑉𝐼𝑊) → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
98f1oeq3d 6829 . 2 ((𝐴𝑉𝐼𝑊) → (𝐹:𝐴1-1-onto→(𝐴m {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
103, 9mpbird 256 1 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  {csn 4627  cmpt 5230   × cxp 5673  1-1-ontowf1o 6541  (class class class)co 7411  m cmap 8822  Xcixp 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-ixp 8894
This theorem is referenced by:  pwssnf1o  17448  mat1f1o  22200
  Copyright terms: Public domain W3C validator