Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapsnf1o | Structured version Visualization version GIF version |
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
ixpsnf1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
Ref | Expression |
---|---|
mapsnf1o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑m {𝐼})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) | |
2 | 1 | ixpsnf1o 8549 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
3 | 2 | adantl 485 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴) |
4 | snex 5299 | . . . . 5 ⊢ {𝐼} ∈ V | |
5 | ixpconstg 8517 | . . . . . 6 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴 ↑m {𝐼})) | |
6 | 5 | eqcomd 2744 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ↑m {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
7 | 4, 6 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐴 ↑m {𝐼}) = X𝑦 ∈ {𝐼}𝐴) |
9 | 8 | f1oeq3d 6616 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐹:𝐴–1-1-onto→(𝐴 ↑m {𝐼}) ↔ 𝐹:𝐴–1-1-onto→X𝑦 ∈ {𝐼}𝐴)) |
10 | 3, 9 | mpbird 260 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→(𝐴 ↑m {𝐼})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 Vcvv 3398 {csn 4517 ↦ cmpt 5111 × cxp 5524 –1-1-onto→wf1o 6339 (class class class)co 7171 ↑m cmap 8438 Xcixp 8508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-oprab 7175 df-mpo 7176 df-map 8440 df-ixp 8509 |
This theorem is referenced by: pwssnf1o 16875 mat1f1o 21230 |
Copyright terms: Public domain | W3C validator |