MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o Structured version   Visualization version   GIF version

Theorem mapsnf1o 8912
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
mapsnf1o ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mapsnf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
21ixpsnf1o 8911 . . 3 (𝐼𝑊𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
32adantl 481 . 2 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
4 snex 5391 . . . . 5 {𝐼} ∈ V
5 ixpconstg 8879 . . . . . 6 (({𝐼} ∈ V ∧ 𝐴𝑉) → X𝑦 ∈ {𝐼}𝐴 = (𝐴m {𝐼}))
65eqcomd 2735 . . . . 5 (({𝐼} ∈ V ∧ 𝐴𝑉) → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
74, 6mpan 690 . . . 4 (𝐴𝑉 → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
87adantr 480 . . 3 ((𝐴𝑉𝐼𝑊) → (𝐴m {𝐼}) = X𝑦 ∈ {𝐼}𝐴)
98f1oeq3d 6797 . 2 ((𝐴𝑉𝐼𝑊) → (𝐹:𝐴1-1-onto→(𝐴m {𝐼}) ↔ 𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴))
103, 9mpbird 257 1 ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  1-1-ontowf1o 6510  (class class class)co 7387  m cmap 8799  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ixp 8871
This theorem is referenced by:  pwssnf1o  17461  mat1f1o  22365
  Copyright terms: Public domain W3C validator