| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brxrncnvep | Structured version Visualization version GIF version | ||
| Description: The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| brxrncnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxrn 38346 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴◡ E 𝐶))) | |
| 2 | brcnvep 38244 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐶 ↔ 𝐶 ∈ 𝐴)) | |
| 3 | 2 | anbi1cd 635 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐴𝑅𝐵 ∧ 𝐴◡ E 𝐶) ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑅𝐵 ∧ 𝐴◡ E 𝐶) ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| 5 | 1, 4 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 E cep 5518 ◡ccnv 5618 ⋉ cxrn 38158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-1st 7924 df-2nd 7925 df-xrn 38343 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |