| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brxrncnvep | Structured version Visualization version GIF version | ||
| Description: The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| brxrncnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxrn 38417 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴◡ E 𝐶))) | |
| 2 | brcnvep 38312 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐶 ↔ 𝐶 ∈ 𝐴)) | |
| 3 | 2 | anbi1cd 635 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐴𝑅𝐵 ∧ 𝐴◡ E 𝐶) ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑅𝐵 ∧ 𝐴◡ E 𝐶) ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| 5 | 1, 4 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 E cep 5513 ◡ccnv 5613 ⋉ cxrn 38224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-xrn 38414 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |