| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiunincf | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| meaiunincf.p | ⊢ Ⅎ𝑛𝜑 |
| meaiunincf.f | ⊢ Ⅎ𝑛𝐸 |
| meaiunincf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiunincf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiunincf.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiunincf.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiunincf.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
| meaiunincf.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
| meaiunincf.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiunincf | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiunincf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meaiunincf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | meaiunincf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 4 | meaiunincf.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 5 | meaiunincf.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 6 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
| 8 | meaiunincf.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
| 9 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
| 10 | 8, 9 | nffv 6832 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
| 11 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
| 12 | 8, 11 | nffv 6832 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
| 13 | 10, 12 | nfss 3928 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
| 14 | 7, 13 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
| 15 | eleq1w 2811 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
| 16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
| 17 | fveq2 6822 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
| 18 | fvoveq1 7372 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
| 19 | 17, 18 | sseq12d 3969 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
| 20 | 16, 19 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
| 21 | meaiunincf.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
| 22 | 14, 20, 21 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
| 23 | meaiunincf.x | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
| 24 | breq2 5096 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) | |
| 25 | 24 | ralbidv 3152 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) |
| 26 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) ≤ 𝑦 | |
| 27 | nfcv 2891 | . . . . . . . . . 10 ⊢ Ⅎ𝑛𝑀 | |
| 28 | 27, 10 | nffv 6832 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
| 29 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑛 ≤ | |
| 30 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑛𝑦 | |
| 31 | 28, 29, 30 | nfbr 5139 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ≤ 𝑦 |
| 32 | 2fveq3 6827 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) | |
| 33 | 32 | breq1d 5102 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 34 | 26, 31, 33 | cbvralw 3271 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 36 | 25, 35 | bitrd 279 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 37 | 36 | cbvrexvw 3208 | . . . 4 ⊢ (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 38 | 23, 37 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 39 | meaiunincf.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 40 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) | |
| 41 | 40, 28, 32 | cbvmpt 5194 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
| 42 | 39, 41 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
| 43 | 1, 2, 3, 4, 22, 38, 42 | meaiuninc 46482 | . 2 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
| 44 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
| 45 | fveq2 6822 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
| 46 | 10, 44, 45 | cbviun 4985 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
| 47 | 46 | fveq2i 6825 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
| 48 | 43, 47 | breqtrdi 5133 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 ∪ ciun 4941 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 ⇝ cli 15391 Meascmea 46450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-xadd 13015 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-salg 46310 df-sumge0 46364 df-mea 46451 |
| This theorem is referenced by: meaiuninc3v 46485 |
| Copyright terms: Public domain | W3C validator |