| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiunincf | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| meaiunincf.p | ⊢ Ⅎ𝑛𝜑 |
| meaiunincf.f | ⊢ Ⅎ𝑛𝐸 |
| meaiunincf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiunincf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiunincf.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiunincf.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiunincf.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
| meaiunincf.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
| meaiunincf.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiunincf | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiunincf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meaiunincf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | meaiunincf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 4 | meaiunincf.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 5 | meaiunincf.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 6 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
| 8 | meaiunincf.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
| 9 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
| 10 | 8, 9 | nffv 6832 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
| 11 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
| 12 | 8, 11 | nffv 6832 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
| 13 | 10, 12 | nfss 3922 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
| 14 | 7, 13 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
| 15 | eleq1w 2814 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
| 16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
| 17 | fveq2 6822 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
| 18 | fvoveq1 7369 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
| 19 | 17, 18 | sseq12d 3963 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
| 20 | 16, 19 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
| 21 | meaiunincf.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
| 22 | 14, 20, 21 | chvarfv 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
| 23 | meaiunincf.x | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
| 24 | breq2 5093 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) | |
| 25 | 24 | ralbidv 3155 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) |
| 26 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) ≤ 𝑦 | |
| 27 | nfcv 2894 | . . . . . . . . . 10 ⊢ Ⅎ𝑛𝑀 | |
| 28 | 27, 10 | nffv 6832 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
| 29 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑛 ≤ | |
| 30 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑛𝑦 | |
| 31 | 28, 29, 30 | nfbr 5136 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ≤ 𝑦 |
| 32 | 2fveq3 6827 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) | |
| 33 | 32 | breq1d 5099 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 34 | 26, 31, 33 | cbvralw 3274 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 36 | 25, 35 | bitrd 279 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 37 | 36 | cbvrexvw 3211 | . . . 4 ⊢ (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 38 | 23, 37 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 39 | meaiunincf.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 40 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) | |
| 41 | 40, 28, 32 | cbvmpt 5191 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
| 42 | 39, 41 | eqtri 2754 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
| 43 | 1, 2, 3, 4, 22, 38, 42 | meaiuninc 46578 | . 2 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
| 44 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
| 45 | fveq2 6822 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
| 46 | 10, 44, 45 | cbviun 4983 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
| 47 | 46 | fveq2i 6825 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
| 48 | 43, 47 | breqtrdi 5130 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∪ ciun 4939 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 ⇝ cli 15391 Meascmea 46546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-salg 46406 df-sumge0 46460 df-mea 46547 |
| This theorem is referenced by: meaiuninc3v 46581 |
| Copyright terms: Public domain | W3C validator |