| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiunincf | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| meaiunincf.p | ⊢ Ⅎ𝑛𝜑 |
| meaiunincf.f | ⊢ Ⅎ𝑛𝐸 |
| meaiunincf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiunincf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiunincf.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiunincf.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiunincf.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
| meaiunincf.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
| meaiunincf.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiunincf | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiunincf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meaiunincf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | meaiunincf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 4 | meaiunincf.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 5 | meaiunincf.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 6 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
| 8 | meaiunincf.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
| 9 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
| 10 | 8, 9 | nffv 6871 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
| 11 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
| 12 | 8, 11 | nffv 6871 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
| 13 | 10, 12 | nfss 3942 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
| 14 | 7, 13 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
| 15 | eleq1w 2812 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
| 16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
| 17 | fveq2 6861 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
| 18 | fvoveq1 7413 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
| 19 | 17, 18 | sseq12d 3983 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
| 20 | 16, 19 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
| 21 | meaiunincf.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
| 22 | 14, 20, 21 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
| 23 | meaiunincf.x | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
| 24 | breq2 5114 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) | |
| 25 | 24 | ralbidv 3157 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) |
| 26 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) ≤ 𝑦 | |
| 27 | nfcv 2892 | . . . . . . . . . 10 ⊢ Ⅎ𝑛𝑀 | |
| 28 | 27, 10 | nffv 6871 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
| 29 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑛 ≤ | |
| 30 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑛𝑦 | |
| 31 | 28, 29, 30 | nfbr 5157 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ≤ 𝑦 |
| 32 | 2fveq3 6866 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) | |
| 33 | 32 | breq1d 5120 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 34 | 26, 31, 33 | cbvralw 3282 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 36 | 25, 35 | bitrd 279 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
| 37 | 36 | cbvrexvw 3217 | . . . 4 ⊢ (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 38 | 23, 37 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
| 39 | meaiunincf.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 40 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) | |
| 41 | 40, 28, 32 | cbvmpt 5212 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
| 42 | 39, 41 | eqtri 2753 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
| 43 | 1, 2, 3, 4, 22, 38, 42 | meaiuninc 46486 | . 2 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
| 44 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
| 45 | fveq2 6861 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
| 46 | 10, 44, 45 | cbviun 5003 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
| 47 | 46 | fveq2i 6864 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
| 48 | 43, 47 | breqtrdi 5151 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∪ ciun 4958 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 ⇝ cli 15457 Meascmea 46454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-salg 46314 df-sumge0 46368 df-mea 46455 |
| This theorem is referenced by: meaiuninc3v 46489 |
| Copyright terms: Public domain | W3C validator |