MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem3 Structured version   Visualization version   GIF version

Theorem ovoliunlem3 25254
Description: Lemma for ovoliun 25255. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ovoliunlem3 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐵,𝑛   𝜑,𝑛   𝑛,𝐺   𝑇,𝑛
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem ovoliunlem3
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2902 . . . 4 𝑚𝐴
2 nfcsb1v 3918 . . . 4 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3907 . . . 4 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 5039 . . 3 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
54fveq2i 6894 . 2 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
6 ovoliun.a . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
7 ovoliun.v . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
8 ovoliun.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
9 2nn 12290 . . . . . . . . 9 2 ∈ ℕ
10 nnnn0 12484 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 nnexpcl 14045 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
129, 10, 11sylancr 586 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1312nnrpd 13019 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
14 rpdivcl 13004 . . . . . . 7 ((𝐵 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
158, 13, 14syl2an 595 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
16 eqid 2731 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1716ovolgelb 25230 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐵 / (2↑𝑛)) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
186, 7, 15, 17syl3anc 1370 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
1918ralrimiva 3145 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
20 ovex 7445 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∈ V
21 nnenom 13950 . . . . 5 ℕ ≈ ω
22 coeq2 5858 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → ((,) ∘ 𝑓) = ((,) ∘ (𝑔𝑛)))
2322rneqd 5937 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2423unieqd 4922 . . . . . . 7 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2524sseq2d 4014 . . . . . 6 (𝑓 = (𝑔𝑛) → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ (𝑔𝑛))))
26 coeq2 5858 . . . . . . . . . 10 (𝑓 = (𝑔𝑛) → ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ (𝑔𝑛)))
2726seqeq3d 13979 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2827rneqd 5937 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2928supeq1d 9445 . . . . . . 7 (𝑓 = (𝑔𝑛) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ))
3029breq1d 5158 . . . . . 6 (𝑓 = (𝑔𝑛) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
3125, 30anbi12d 630 . . . . 5 (𝑓 = (𝑔𝑛) → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3220, 21, 31axcc4 10438 . . . 4 (∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3319, 32syl 17 . . 3 (𝜑 → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
34 xpnnen 16159 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
3534ensymi 9004 . . . . . 6 ℕ ≈ (ℕ × ℕ)
36 bren 8953 . . . . . 6 (ℕ ≈ (ℕ × ℕ) ↔ ∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
3735, 36mpbi 229 . . . . 5 𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ)
38 ovoliun.t . . . . . . . 8 𝑇 = seq1( + , 𝐺)
39 ovoliun.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
40 nfcv 2902 . . . . . . . . . 10 𝑚(vol*‘𝐴)
41 nfcv 2902 . . . . . . . . . . 11 𝑛vol*
4241, 2nffv 6901 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
433fveq2d 6895 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4440, 42, 43cbvmpt 5259 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
4539, 44eqtri 2759 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
466ralrimiva 3145 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
47 nfv 1916 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
48 nfcv 2902 . . . . . . . . . . . . 13 𝑛
492, 48nfss 3974 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
503sseq1d 4013 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
5147, 49, 50cbvralw 3302 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5246, 51sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5352r19.21bi 3247 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
5453ad4ant14 749 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
557ralrimiva 3145 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5640nfel1 2918 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5742nfel1 2918 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5843eleq1d 2817 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
5956, 57, 58cbvralw 3302 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6055, 59sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6160r19.21bi 3247 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6261ad4ant14 749 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
63 ovoliun.r . . . . . . . . 9 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
6463ad2antrr 723 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
658ad2antrr 723 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝐵 ∈ ℝ+)
66 eqid 2731 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚)))
67 eqid 2731 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))))
68 eqid 2731 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))) = (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))
69 simplr 766 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
70 simprl 768 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
71 simprr 770 . . . . . . . . . . 11 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
72 nfv 1916 . . . . . . . . . . . 12 𝑚(𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
73 nfcv 2902 . . . . . . . . . . . . . 14 𝑛 ran ((,) ∘ (𝑔𝑚))
742, 73nfss 3974 . . . . . . . . . . . . 13 𝑛𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))
75 nfcv 2902 . . . . . . . . . . . . . 14 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < )
76 nfcv 2902 . . . . . . . . . . . . . 14 𝑛
77 nfcv 2902 . . . . . . . . . . . . . . 15 𝑛 +
78 nfcv 2902 . . . . . . . . . . . . . . 15 𝑛(𝐵 / (2↑𝑚))
7942, 77, 78nfov 7442 . . . . . . . . . . . . . 14 𝑛((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8075, 76, 79nfbr 5195 . . . . . . . . . . . . 13 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8174, 80nfan 1901 . . . . . . . . . . . 12 𝑛(𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
82 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
8382coeq2d 5862 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((,) ∘ (𝑔𝑛)) = ((,) ∘ (𝑔𝑚)))
8483rneqd 5937 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
8584unieqd 4922 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
863, 85sseq12d 4015 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐴 ran ((,) ∘ (𝑔𝑛)) ↔ 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))))
8782coeq2d 5862 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((abs ∘ − ) ∘ (𝑔𝑛)) = ((abs ∘ − ) ∘ (𝑔𝑚)))
8887seqeq3d 13979 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
8988rneqd 5937 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
9089supeq1d 9445 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ))
91 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
9291oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐵 / (2↑𝑛)) = (𝐵 / (2↑𝑚)))
9343, 92oveq12d 7430 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
9490, 93breq12d 5161 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9586, 94anbi12d 630 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))))
9672, 81, 95cbvralw 3302 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9771, 96sylib 217 . . . . . . . . . 10 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9897r19.21bi 3247 . . . . . . . . 9 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9998simpld 494 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)))
10098simprd 495 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
10138, 45, 54, 62, 64, 65, 66, 67, 68, 69, 70, 99, 100ovoliunlem2 25253 . . . . . . 7 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
102101exp31 419 . . . . . 6 (𝜑 → (𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
103102exlimdv 1935 . . . . 5 (𝜑 → (∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
10437, 103mpi 20 . . . 4 (𝜑 → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
105104exlimdv 1935 . . 3 (𝜑 → (∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
10633, 105mpd 15 . 2 (𝜑 → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
1075, 106eqbrtrid 5183 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  csb 3893  cin 3947  wss 3948   cuni 4908   ciun 4997   class class class wbr 5148  cmpt 5231   × cxp 5674  ran crn 5677  ccom 5680  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  m cmap 8824  cen 8940  supcsup 9439  cr 11113  1c1 11115   + caddc 11117  *cxr 11252   < clt 11253  cle 11254  cmin 11449   / cdiv 11876  cn 12217  2c2 12272  0cn0 12477  +crp 12979  (,)cioo 13329  seqcseq 13971  cexp 14032  abscabs 15186  vol*covol 25212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cc 10434  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-ioo 13333  df-ico 13335  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-ovol 25214
This theorem is referenced by:  ovoliun  25255
  Copyright terms: Public domain W3C validator