MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem3 Structured version   Visualization version   GIF version

Theorem ovoliunlem3 24884
Description: Lemma for ovoliun 24885. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ovoliunlem3 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐵,𝑛   𝜑,𝑛   𝑛,𝐺   𝑇,𝑛
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem ovoliunlem3
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2904 . . . 4 𝑚𝐴
2 nfcsb1v 3881 . . . 4 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3870 . . . 4 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 4997 . . 3 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
54fveq2i 6846 . 2 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
6 ovoliun.a . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
7 ovoliun.v . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
8 ovoliun.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
9 2nn 12231 . . . . . . . . 9 2 ∈ ℕ
10 nnnn0 12425 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 nnexpcl 13986 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
129, 10, 11sylancr 588 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1312nnrpd 12960 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
14 rpdivcl 12945 . . . . . . 7 ((𝐵 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
158, 13, 14syl2an 597 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
16 eqid 2733 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1716ovolgelb 24860 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐵 / (2↑𝑛)) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
186, 7, 15, 17syl3anc 1372 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
1918ralrimiva 3140 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
20 ovex 7391 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∈ V
21 nnenom 13891 . . . . 5 ℕ ≈ ω
22 coeq2 5815 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → ((,) ∘ 𝑓) = ((,) ∘ (𝑔𝑛)))
2322rneqd 5894 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2423unieqd 4880 . . . . . . 7 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2524sseq2d 3977 . . . . . 6 (𝑓 = (𝑔𝑛) → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ (𝑔𝑛))))
26 coeq2 5815 . . . . . . . . . 10 (𝑓 = (𝑔𝑛) → ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ (𝑔𝑛)))
2726seqeq3d 13920 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2827rneqd 5894 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2928supeq1d 9387 . . . . . . 7 (𝑓 = (𝑔𝑛) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ))
3029breq1d 5116 . . . . . 6 (𝑓 = (𝑔𝑛) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
3125, 30anbi12d 632 . . . . 5 (𝑓 = (𝑔𝑛) → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3220, 21, 31axcc4 10380 . . . 4 (∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3319, 32syl 17 . . 3 (𝜑 → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
34 xpnnen 16098 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
3534ensymi 8947 . . . . . 6 ℕ ≈ (ℕ × ℕ)
36 bren 8896 . . . . . 6 (ℕ ≈ (ℕ × ℕ) ↔ ∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
3735, 36mpbi 229 . . . . 5 𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ)
38 ovoliun.t . . . . . . . 8 𝑇 = seq1( + , 𝐺)
39 ovoliun.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
40 nfcv 2904 . . . . . . . . . 10 𝑚(vol*‘𝐴)
41 nfcv 2904 . . . . . . . . . . 11 𝑛vol*
4241, 2nffv 6853 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
433fveq2d 6847 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4440, 42, 43cbvmpt 5217 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
4539, 44eqtri 2761 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
466ralrimiva 3140 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
47 nfv 1918 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
48 nfcv 2904 . . . . . . . . . . . . 13 𝑛
492, 48nfss 3937 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
503sseq1d 3976 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
5147, 49, 50cbvralw 3288 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5246, 51sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5352r19.21bi 3233 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
5453ad4ant14 751 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
557ralrimiva 3140 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5640nfel1 2920 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5742nfel1 2920 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5843eleq1d 2819 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
5956, 57, 58cbvralw 3288 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6055, 59sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6160r19.21bi 3233 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6261ad4ant14 751 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
63 ovoliun.r . . . . . . . . 9 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
6463ad2antrr 725 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
658ad2antrr 725 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝐵 ∈ ℝ+)
66 eqid 2733 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚)))
67 eqid 2733 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))))
68 eqid 2733 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))) = (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))
69 simplr 768 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
70 simprl 770 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
71 simprr 772 . . . . . . . . . . 11 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
72 nfv 1918 . . . . . . . . . . . 12 𝑚(𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
73 nfcv 2904 . . . . . . . . . . . . . 14 𝑛 ran ((,) ∘ (𝑔𝑚))
742, 73nfss 3937 . . . . . . . . . . . . 13 𝑛𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))
75 nfcv 2904 . . . . . . . . . . . . . 14 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < )
76 nfcv 2904 . . . . . . . . . . . . . 14 𝑛
77 nfcv 2904 . . . . . . . . . . . . . . 15 𝑛 +
78 nfcv 2904 . . . . . . . . . . . . . . 15 𝑛(𝐵 / (2↑𝑚))
7942, 77, 78nfov 7388 . . . . . . . . . . . . . 14 𝑛((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8075, 76, 79nfbr 5153 . . . . . . . . . . . . 13 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8174, 80nfan 1903 . . . . . . . . . . . 12 𝑛(𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
82 fveq2 6843 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
8382coeq2d 5819 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((,) ∘ (𝑔𝑛)) = ((,) ∘ (𝑔𝑚)))
8483rneqd 5894 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
8584unieqd 4880 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
863, 85sseq12d 3978 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐴 ran ((,) ∘ (𝑔𝑛)) ↔ 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))))
8782coeq2d 5819 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((abs ∘ − ) ∘ (𝑔𝑛)) = ((abs ∘ − ) ∘ (𝑔𝑚)))
8887seqeq3d 13920 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
8988rneqd 5894 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
9089supeq1d 9387 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ))
91 oveq2 7366 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
9291oveq2d 7374 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐵 / (2↑𝑛)) = (𝐵 / (2↑𝑚)))
9343, 92oveq12d 7376 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
9490, 93breq12d 5119 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9586, 94anbi12d 632 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))))
9672, 81, 95cbvralw 3288 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9771, 96sylib 217 . . . . . . . . . 10 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9897r19.21bi 3233 . . . . . . . . 9 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9998simpld 496 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)))
10098simprd 497 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
10138, 45, 54, 62, 64, 65, 66, 67, 68, 69, 70, 99, 100ovoliunlem2 24883 . . . . . . 7 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
102101exp31 421 . . . . . 6 (𝜑 → (𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
103102exlimdv 1937 . . . . 5 (𝜑 → (∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
10437, 103mpi 20 . . . 4 (𝜑 → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
105104exlimdv 1937 . . 3 (𝜑 → (∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
10633, 105mpd 15 . 2 (𝜑 → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
1075, 106eqbrtrid 5141 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wral 3061  wrex 3070  csb 3856  cin 3910  wss 3911   cuni 4866   ciun 4955   class class class wbr 5106  cmpt 5189   × cxp 5632  ran crn 5635  ccom 5638  wf 6493  1-1-ontowf1o 6496  cfv 6497  (class class class)co 7358  1st c1st 7920  2nd c2nd 7921  m cmap 8768  cen 8883  supcsup 9381  cr 11055  1c1 11057   + caddc 11059  *cxr 11193   < clt 11194  cle 11195  cmin 11390   / cdiv 11817  cn 12158  2c2 12213  0cn0 12418  +crp 12920  (,)cioo 13270  seqcseq 13912  cexp 13973  abscabs 15125  vol*covol 24842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cc 10376  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-ioo 13274  df-ico 13276  df-fz 13431  df-fzo 13574  df-fl 13703  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-rlim 15377  df-sum 15577  df-ovol 24844
This theorem is referenced by:  ovoliun  24885
  Copyright terms: Public domain W3C validator