MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem3 Structured version   Visualization version   GIF version

Theorem ovoliunlem3 24104
Description: Lemma for ovoliun 24105. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ovoliunlem3 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐵,𝑛   𝜑,𝑛   𝑛,𝐺   𝑇,𝑛
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem ovoliunlem3
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2977 . . . 4 𝑚𝐴
2 nfcsb1v 3906 . . . 4 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3896 . . . 4 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 4960 . . 3 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
54fveq2i 6672 . 2 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
6 ovoliun.a . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
7 ovoliun.v . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
8 ovoliun.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
9 2nn 11709 . . . . . . . . 9 2 ∈ ℕ
10 nnnn0 11903 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 nnexpcl 13441 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
129, 10, 11sylancr 589 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1312nnrpd 12428 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
14 rpdivcl 12413 . . . . . . 7 ((𝐵 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
158, 13, 14syl2an 597 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
16 eqid 2821 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1716ovolgelb 24080 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐵 / (2↑𝑛)) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
186, 7, 15, 17syl3anc 1367 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
1918ralrimiva 3182 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
20 ovex 7188 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∈ V
21 nnenom 13347 . . . . 5 ℕ ≈ ω
22 coeq2 5728 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → ((,) ∘ 𝑓) = ((,) ∘ (𝑔𝑛)))
2322rneqd 5807 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2423unieqd 4851 . . . . . . 7 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2524sseq2d 3998 . . . . . 6 (𝑓 = (𝑔𝑛) → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ (𝑔𝑛))))
26 coeq2 5728 . . . . . . . . . 10 (𝑓 = (𝑔𝑛) → ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ (𝑔𝑛)))
2726seqeq3d 13376 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2827rneqd 5807 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2928supeq1d 8909 . . . . . . 7 (𝑓 = (𝑔𝑛) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ))
3029breq1d 5075 . . . . . 6 (𝑓 = (𝑔𝑛) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
3125, 30anbi12d 632 . . . . 5 (𝑓 = (𝑔𝑛) → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3220, 21, 31axcc4 9860 . . . 4 (∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3319, 32syl 17 . . 3 (𝜑 → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
34 xpnnen 15563 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
3534ensymi 8558 . . . . . 6 ℕ ≈ (ℕ × ℕ)
36 bren 8517 . . . . . 6 (ℕ ≈ (ℕ × ℕ) ↔ ∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
3735, 36mpbi 232 . . . . 5 𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ)
38 ovoliun.t . . . . . . . 8 𝑇 = seq1( + , 𝐺)
39 ovoliun.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
40 nfcv 2977 . . . . . . . . . 10 𝑚(vol*‘𝐴)
41 nfcv 2977 . . . . . . . . . . 11 𝑛vol*
4241, 2nffv 6679 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
433fveq2d 6673 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4440, 42, 43cbvmpt 5166 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
4539, 44eqtri 2844 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
466ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
47 nfv 1911 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
48 nfcv 2977 . . . . . . . . . . . . 13 𝑛
492, 48nfss 3959 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
503sseq1d 3997 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
5147, 49, 50cbvralw 3441 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5246, 51sylib 220 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5352r19.21bi 3208 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
5453ad4ant14 750 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
557ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5640nfel1 2994 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5742nfel1 2994 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5843eleq1d 2897 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
5956, 57, 58cbvralw 3441 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6055, 59sylib 220 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6160r19.21bi 3208 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6261ad4ant14 750 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
63 ovoliun.r . . . . . . . . 9 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
6463ad2antrr 724 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
658ad2antrr 724 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝐵 ∈ ℝ+)
66 eqid 2821 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚)))
67 eqid 2821 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))))
68 eqid 2821 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))) = (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))
69 simplr 767 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
70 simprl 769 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
71 simprr 771 . . . . . . . . . . 11 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
72 nfv 1911 . . . . . . . . . . . 12 𝑚(𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
73 nfcv 2977 . . . . . . . . . . . . . 14 𝑛 ran ((,) ∘ (𝑔𝑚))
742, 73nfss 3959 . . . . . . . . . . . . 13 𝑛𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))
75 nfcv 2977 . . . . . . . . . . . . . 14 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < )
76 nfcv 2977 . . . . . . . . . . . . . 14 𝑛
77 nfcv 2977 . . . . . . . . . . . . . . 15 𝑛 +
78 nfcv 2977 . . . . . . . . . . . . . . 15 𝑛(𝐵 / (2↑𝑚))
7942, 77, 78nfov 7185 . . . . . . . . . . . . . 14 𝑛((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8075, 76, 79nfbr 5112 . . . . . . . . . . . . 13 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8174, 80nfan 1896 . . . . . . . . . . . 12 𝑛(𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
82 fveq2 6669 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
8382coeq2d 5732 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((,) ∘ (𝑔𝑛)) = ((,) ∘ (𝑔𝑚)))
8483rneqd 5807 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
8584unieqd 4851 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
863, 85sseq12d 3999 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐴 ran ((,) ∘ (𝑔𝑛)) ↔ 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))))
8782coeq2d 5732 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((abs ∘ − ) ∘ (𝑔𝑛)) = ((abs ∘ − ) ∘ (𝑔𝑚)))
8887seqeq3d 13376 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
8988rneqd 5807 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
9089supeq1d 8909 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ))
91 oveq2 7163 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
9291oveq2d 7171 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐵 / (2↑𝑛)) = (𝐵 / (2↑𝑚)))
9343, 92oveq12d 7173 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
9490, 93breq12d 5078 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9586, 94anbi12d 632 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))))
9672, 81, 95cbvralw 3441 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9771, 96sylib 220 . . . . . . . . . 10 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9897r19.21bi 3208 . . . . . . . . 9 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9998simpld 497 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)))
10098simprd 498 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
10138, 45, 54, 62, 64, 65, 66, 67, 68, 69, 70, 99, 100ovoliunlem2 24103 . . . . . . 7 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
102101exp31 422 . . . . . 6 (𝜑 → (𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
103102exlimdv 1930 . . . . 5 (𝜑 → (∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
10437, 103mpi 20 . . . 4 (𝜑 → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
105104exlimdv 1930 . . 3 (𝜑 → (∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
10633, 105mpd 15 . 2 (𝜑 → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
1075, 106eqbrtrid 5100 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wex 1776  wcel 2110  wral 3138  wrex 3139  csb 3882  cin 3934  wss 3935   cuni 4837   ciun 4918   class class class wbr 5065  cmpt 5145   × cxp 5552  ran crn 5555  ccom 5558  wf 6350  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  1st c1st 7686  2nd c2nd 7687  m cmap 8405  cen 8505  supcsup 8903  cr 10535  1c1 10537   + caddc 10539  *cxr 10673   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  +crp 12388  (,)cioo 12737  seqcseq 13368  cexp 13428  abscabs 14592  vol*covol 24062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ioo 12741  df-ico 12743  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-ovol 24064
This theorem is referenced by:  ovoliun  24105
  Copyright terms: Public domain W3C validator