MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun Structured version   Visualization version   GIF version

Theorem ovoliun 25434
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 25414, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovoliun (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 11169 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
3 nnuz 12775 . . . . . . . . 9 ℕ = (ℤ‘1)
4 1zzd 12503 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 ovoliun.v . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
6 ovoliun.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
75, 6fmptd 7047 . . . . . . . . . 10 (𝜑𝐺:ℕ⟶ℝ)
87ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
93, 4, 8serfre 13938 . . . . . . . 8 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
10 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
1110feq1i 6642 . . . . . . . 8 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
129, 11sylibr 234 . . . . . . 7 (𝜑𝑇:ℕ⟶ℝ)
13 1nn 12136 . . . . . . 7 1 ∈ ℕ
14 ffvelcdm 7014 . . . . . . 7 ((𝑇:ℕ⟶ℝ ∧ 1 ∈ ℕ) → (𝑇‘1) ∈ ℝ)
1512, 13, 14sylancl 586 . . . . . 6 (𝜑 → (𝑇‘1) ∈ ℝ)
1615rexrd 11162 . . . . 5 (𝜑 → (𝑇‘1) ∈ ℝ*)
1712frnd 6659 . . . . . . 7 (𝜑 → ran 𝑇 ⊆ ℝ)
18 ressxr 11156 . . . . . . 7 ℝ ⊆ ℝ*
1917, 18sstrdi 3947 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ*)
20 supxrcl 13214 . . . . . 6 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2119, 20syl 17 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2215mnfltd 13023 . . . . 5 (𝜑 → -∞ < (𝑇‘1))
2312ffnd 6652 . . . . . . 7 (𝜑𝑇 Fn ℕ)
24 fnfvelrn 7013 . . . . . . 7 ((𝑇 Fn ℕ ∧ 1 ∈ ℕ) → (𝑇‘1) ∈ ran 𝑇)
2523, 13, 24sylancl 586 . . . . . 6 (𝜑 → (𝑇‘1) ∈ ran 𝑇)
26 supxrub 13223 . . . . . 6 ((ran 𝑇 ⊆ ℝ* ∧ (𝑇‘1) ∈ ran 𝑇) → (𝑇‘1) ≤ sup(ran 𝑇, ℝ*, < ))
2719, 25, 26syl2anc 584 . . . . 5 (𝜑 → (𝑇‘1) ≤ sup(ran 𝑇, ℝ*, < ))
282, 16, 21, 22, 27xrltletrd 13060 . . . 4 (𝜑 → -∞ < sup(ran 𝑇, ℝ*, < ))
29 xrrebnd 13067 . . . . 5 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3021, 29syl 17 . . . 4 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3128, 30mpbirand 707 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑇, ℝ*, < ) < +∞))
32 nfcv 2894 . . . . . . . . 9 𝑚𝐴
33 nfcsb1v 3874 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴
34 csbeq1a 3864 . . . . . . . . 9 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
3532, 33, 34cbviun 4985 . . . . . . . 8 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
3635fveq2i 6825 . . . . . . 7 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
37 nfcv 2894 . . . . . . . . . 10 𝑚(vol*‘𝐴)
38 nfcv 2894 . . . . . . . . . . 11 𝑛vol*
3938, 33nffv 6832 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
4034fveq2d 6826 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4137, 39, 40cbvmpt 5193 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
426, 41eqtri 2754 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
43 ovoliun.a . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4443ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
45 nfv 1915 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
46 nfcv 2894 . . . . . . . . . . . . 13 𝑛
4733, 46nfss 3927 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
4834sseq1d 3966 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
4945, 47, 48cbvralw 3274 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5044, 49sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5150ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5251r19.21bi 3224 . . . . . . . 8 ((((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
535ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5437nfel1 2911 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5539nfel1 2911 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5640eleq1d 2816 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
5754, 55, 56cbvralw 3274 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5853, 57sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5958ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6059r19.21bi 3224 . . . . . . . 8 ((((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
61 simplr 768 . . . . . . . 8 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
62 simpr 484 . . . . . . . 8 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6310, 42, 52, 60, 61, 62ovoliunlem3 25433 . . . . . . 7 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
6436, 63eqbrtrid 5126 . . . . . 6 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
6564ralrimiva 3124 . . . . 5 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
66 iunss 4994 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
6744, 66sylibr 234 . . . . . . 7 (𝜑 𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
68 ovolcl 25407 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
6967, 68syl 17 . . . . . 6 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
70 xralrple 13104 . . . . . 6 (((vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥)))
7169, 70sylan 580 . . . . 5 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥)))
7265, 71mpbird 257 . . . 4 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
7372ex 412 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
7431, 73sylbird 260 . 2 (𝜑 → (sup(ran 𝑇, ℝ*, < ) < +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
75 nltpnft 13063 . . . 4 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* → (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ ¬ sup(ran 𝑇, ℝ*, < ) < +∞))
7621, 75syl 17 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ ¬ sup(ran 𝑇, ℝ*, < ) < +∞))
77 pnfge 13029 . . . . 5 ((vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞)
7869, 77syl 17 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞)
79 breq2 5095 . . . 4 (sup(ran 𝑇, ℝ*, < ) = +∞ → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞))
8078, 79syl5ibrcom 247 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) = +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
8176, 80sylbird 260 . 2 (𝜑 → (¬ sup(ran 𝑇, ℝ*, < ) < +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
8274, 81pm2.61d 179 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  csb 3850  wss 3902   ciun 4941   class class class wbr 5091  cmpt 5172  ran crn 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cr 11005  1c1 11007   + caddc 11009  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  cn 12125  +crp 12890  seqcseq 13908  vol*covol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-ovol 25393
This theorem is referenced by:  ovoliun2  25435  voliunlem2  25480  voliunlem3  25481  ex-ovoliunnfl  37709
  Copyright terms: Public domain W3C validator