MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun Structured version   Visualization version   GIF version

Theorem ovoliun 25254
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 25234, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ β„• ↦ (vol*β€˜π΄))
ovoliun.a ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐴 βŠ† ℝ)
ovoliun.v ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜π΄) ∈ ℝ)
Assertion
Ref Expression
ovoliun (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ))
Distinct variable group:   πœ‘,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun
Dummy variables π‘˜ π‘š π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 11275 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (πœ‘ β†’ -∞ ∈ ℝ*)
3 nnuz 12869 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
4 1zzd 12597 . . . . . . . . 9 (πœ‘ β†’ 1 ∈ β„€)
5 ovoliun.v . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜π΄) ∈ ℝ)
6 ovoliun.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ β„• ↦ (vol*β€˜π΄))
75, 6fmptd 7114 . . . . . . . . . 10 (πœ‘ β†’ 𝐺:β„•βŸΆβ„)
87ffvelcdmda 7085 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
93, 4, 8serfre 14001 . . . . . . . 8 (πœ‘ β†’ seq1( + , 𝐺):β„•βŸΆβ„)
10 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
1110feq1i 6707 . . . . . . . 8 (𝑇:β„•βŸΆβ„ ↔ seq1( + , 𝐺):β„•βŸΆβ„)
129, 11sylibr 233 . . . . . . 7 (πœ‘ β†’ 𝑇:β„•βŸΆβ„)
13 1nn 12227 . . . . . . 7 1 ∈ β„•
14 ffvelcdm 7082 . . . . . . 7 ((𝑇:β„•βŸΆβ„ ∧ 1 ∈ β„•) β†’ (π‘‡β€˜1) ∈ ℝ)
1512, 13, 14sylancl 584 . . . . . 6 (πœ‘ β†’ (π‘‡β€˜1) ∈ ℝ)
1615rexrd 11268 . . . . 5 (πœ‘ β†’ (π‘‡β€˜1) ∈ ℝ*)
1712frnd 6724 . . . . . . 7 (πœ‘ β†’ ran 𝑇 βŠ† ℝ)
18 ressxr 11262 . . . . . . 7 ℝ βŠ† ℝ*
1917, 18sstrdi 3993 . . . . . 6 (πœ‘ β†’ ran 𝑇 βŠ† ℝ*)
20 supxrcl 13298 . . . . . 6 (ran 𝑇 βŠ† ℝ* β†’ sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2119, 20syl 17 . . . . 5 (πœ‘ β†’ sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2215mnfltd 13108 . . . . 5 (πœ‘ β†’ -∞ < (π‘‡β€˜1))
2312ffnd 6717 . . . . . . 7 (πœ‘ β†’ 𝑇 Fn β„•)
24 fnfvelrn 7081 . . . . . . 7 ((𝑇 Fn β„• ∧ 1 ∈ β„•) β†’ (π‘‡β€˜1) ∈ ran 𝑇)
2523, 13, 24sylancl 584 . . . . . 6 (πœ‘ β†’ (π‘‡β€˜1) ∈ ran 𝑇)
26 supxrub 13307 . . . . . 6 ((ran 𝑇 βŠ† ℝ* ∧ (π‘‡β€˜1) ∈ ran 𝑇) β†’ (π‘‡β€˜1) ≀ sup(ran 𝑇, ℝ*, < ))
2719, 25, 26syl2anc 582 . . . . 5 (πœ‘ β†’ (π‘‡β€˜1) ≀ sup(ran 𝑇, ℝ*, < ))
282, 16, 21, 22, 27xrltletrd 13144 . . . 4 (πœ‘ β†’ -∞ < sup(ran 𝑇, ℝ*, < ))
29 xrrebnd 13151 . . . . 5 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3021, 29syl 17 . . . 4 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3128, 30mpbirand 703 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑇, ℝ*, < ) < +∞))
32 nfcv 2901 . . . . . . . . 9 β„²π‘šπ΄
33 nfcsb1v 3917 . . . . . . . . 9 β„²π‘›β¦‹π‘š / π‘›β¦Œπ΄
34 csbeq1a 3906 . . . . . . . . 9 (𝑛 = π‘š β†’ 𝐴 = β¦‹π‘š / π‘›β¦Œπ΄)
3532, 33, 34cbviun 5038 . . . . . . . 8 βˆͺ 𝑛 ∈ β„• 𝐴 = βˆͺ π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄
3635fveq2i 6893 . . . . . . 7 (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) = (vol*β€˜βˆͺ π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄)
37 nfcv 2901 . . . . . . . . . 10 β„²π‘š(vol*β€˜π΄)
38 nfcv 2901 . . . . . . . . . . 11 Ⅎ𝑛vol*
3938, 33nffv 6900 . . . . . . . . . 10 Ⅎ𝑛(vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄)
4034fveq2d 6894 . . . . . . . . . 10 (𝑛 = π‘š β†’ (vol*β€˜π΄) = (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄))
4137, 39, 40cbvmpt 5258 . . . . . . . . 9 (𝑛 ∈ β„• ↦ (vol*β€˜π΄)) = (π‘š ∈ β„• ↦ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄))
426, 41eqtri 2758 . . . . . . . 8 𝐺 = (π‘š ∈ β„• ↦ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄))
43 ovoliun.a . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐴 βŠ† ℝ)
4443ralrimiva 3144 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘› ∈ β„• 𝐴 βŠ† ℝ)
45 nfv 1915 . . . . . . . . . . . 12 β„²π‘š 𝐴 βŠ† ℝ
46 nfcv 2901 . . . . . . . . . . . . 13 Ⅎ𝑛ℝ
4733, 46nfss 3973 . . . . . . . . . . . 12 β„²π‘›β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ
4834sseq1d 4012 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ (𝐴 βŠ† ℝ ↔ β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ))
4945, 47, 48cbvralw 3301 . . . . . . . . . . 11 (βˆ€π‘› ∈ β„• 𝐴 βŠ† ℝ ↔ βˆ€π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
5044, 49sylib 217 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
5150ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ βˆ€π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
5251r19.21bi 3246 . . . . . . . 8 ((((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ β„•) β†’ β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
535ralrimiva 3144 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘› ∈ β„• (vol*β€˜π΄) ∈ ℝ)
5437nfel1 2917 . . . . . . . . . . . 12 β„²π‘š(vol*β€˜π΄) ∈ ℝ
5539nfel1 2917 . . . . . . . . . . . 12 Ⅎ𝑛(vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ
5640eleq1d 2816 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((vol*β€˜π΄) ∈ ℝ ↔ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ))
5754, 55, 56cbvralw 3301 . . . . . . . . . . 11 (βˆ€π‘› ∈ β„• (vol*β€˜π΄) ∈ ℝ ↔ βˆ€π‘š ∈ β„• (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
5853, 57sylib 217 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘š ∈ β„• (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
5958ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ βˆ€π‘š ∈ β„• (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
6059r19.21bi 3246 . . . . . . . 8 ((((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ β„•) β†’ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
61 simplr 765 . . . . . . . 8 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
62 simpr 483 . . . . . . . 8 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ+)
6310, 42, 52, 60, 61, 62ovoliunlem3 25253 . . . . . . 7 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ (vol*β€˜βˆͺ π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯))
6436, 63eqbrtrid 5182 . . . . . 6 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯))
6564ralrimiva 3144 . . . . 5 ((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ βˆ€π‘₯ ∈ ℝ+ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯))
66 iunss 5047 . . . . . . . 8 (βˆͺ 𝑛 ∈ β„• 𝐴 βŠ† ℝ ↔ βˆ€π‘› ∈ β„• 𝐴 βŠ† ℝ)
6744, 66sylibr 233 . . . . . . 7 (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• 𝐴 βŠ† ℝ)
68 ovolcl 25227 . . . . . . 7 (βˆͺ 𝑛 ∈ β„• 𝐴 βŠ† ℝ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ*)
6967, 68syl 17 . . . . . 6 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ*)
70 xralrple 13188 . . . . . 6 (((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ* ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ) ↔ βˆ€π‘₯ ∈ ℝ+ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯)))
7169, 70sylan 578 . . . . 5 ((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ) ↔ βˆ€π‘₯ ∈ ℝ+ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯)))
7265, 71mpbird 256 . . . 4 ((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ))
7372ex 411 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
7431, 73sylbird 259 . 2 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) < +∞ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
75 nltpnft 13147 . . . 4 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* β†’ (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ Β¬ sup(ran 𝑇, ℝ*, < ) < +∞))
7621, 75syl 17 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ Β¬ sup(ran 𝑇, ℝ*, < ) < +∞))
77 pnfge 13114 . . . . 5 ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ* β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ +∞)
7869, 77syl 17 . . . 4 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ +∞)
79 breq2 5151 . . . 4 (sup(ran 𝑇, ℝ*, < ) = +∞ β†’ ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ) ↔ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ +∞))
8078, 79syl5ibrcom 246 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) = +∞ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
8176, 80sylbird 259 . 2 (πœ‘ β†’ (Β¬ sup(ran 𝑇, ℝ*, < ) < +∞ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
8274, 81pm2.61d 179 1 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  β¦‹csb 3892   βŠ† wss 3947  βˆͺ ciun 4996   class class class wbr 5147   ↦ cmpt 5230  ran crn 5676   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  supcsup 9437  β„cr 11111  1c1 11113   + caddc 11115  +∞cpnf 11249  -∞cmnf 11250  β„*cxr 11251   < clt 11252   ≀ cle 11253  β„•cn 12216  β„+crp 12978  seqcseq 13970  vol*covol 25211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-ioo 13332  df-ico 13334  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-ovol 25213
This theorem is referenced by:  ovoliun2  25255  voliunlem2  25300  voliunlem3  25301  ex-ovoliunnfl  36834
  Copyright terms: Public domain W3C validator