MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun Structured version   Visualization version   GIF version

Theorem ovoliun 25022
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 25002, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ β„• ↦ (vol*β€˜π΄))
ovoliun.a ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐴 βŠ† ℝ)
ovoliun.v ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜π΄) ∈ ℝ)
Assertion
Ref Expression
ovoliun (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ))
Distinct variable group:   πœ‘,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun
Dummy variables π‘˜ π‘š π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 11271 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (πœ‘ β†’ -∞ ∈ ℝ*)
3 nnuz 12865 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
4 1zzd 12593 . . . . . . . . 9 (πœ‘ β†’ 1 ∈ β„€)
5 ovoliun.v . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜π΄) ∈ ℝ)
6 ovoliun.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ β„• ↦ (vol*β€˜π΄))
75, 6fmptd 7114 . . . . . . . . . 10 (πœ‘ β†’ 𝐺:β„•βŸΆβ„)
87ffvelcdmda 7087 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
93, 4, 8serfre 13997 . . . . . . . 8 (πœ‘ β†’ seq1( + , 𝐺):β„•βŸΆβ„)
10 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
1110feq1i 6709 . . . . . . . 8 (𝑇:β„•βŸΆβ„ ↔ seq1( + , 𝐺):β„•βŸΆβ„)
129, 11sylibr 233 . . . . . . 7 (πœ‘ β†’ 𝑇:β„•βŸΆβ„)
13 1nn 12223 . . . . . . 7 1 ∈ β„•
14 ffvelcdm 7084 . . . . . . 7 ((𝑇:β„•βŸΆβ„ ∧ 1 ∈ β„•) β†’ (π‘‡β€˜1) ∈ ℝ)
1512, 13, 14sylancl 587 . . . . . 6 (πœ‘ β†’ (π‘‡β€˜1) ∈ ℝ)
1615rexrd 11264 . . . . 5 (πœ‘ β†’ (π‘‡β€˜1) ∈ ℝ*)
1712frnd 6726 . . . . . . 7 (πœ‘ β†’ ran 𝑇 βŠ† ℝ)
18 ressxr 11258 . . . . . . 7 ℝ βŠ† ℝ*
1917, 18sstrdi 3995 . . . . . 6 (πœ‘ β†’ ran 𝑇 βŠ† ℝ*)
20 supxrcl 13294 . . . . . 6 (ran 𝑇 βŠ† ℝ* β†’ sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2119, 20syl 17 . . . . 5 (πœ‘ β†’ sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2215mnfltd 13104 . . . . 5 (πœ‘ β†’ -∞ < (π‘‡β€˜1))
2312ffnd 6719 . . . . . . 7 (πœ‘ β†’ 𝑇 Fn β„•)
24 fnfvelrn 7083 . . . . . . 7 ((𝑇 Fn β„• ∧ 1 ∈ β„•) β†’ (π‘‡β€˜1) ∈ ran 𝑇)
2523, 13, 24sylancl 587 . . . . . 6 (πœ‘ β†’ (π‘‡β€˜1) ∈ ran 𝑇)
26 supxrub 13303 . . . . . 6 ((ran 𝑇 βŠ† ℝ* ∧ (π‘‡β€˜1) ∈ ran 𝑇) β†’ (π‘‡β€˜1) ≀ sup(ran 𝑇, ℝ*, < ))
2719, 25, 26syl2anc 585 . . . . 5 (πœ‘ β†’ (π‘‡β€˜1) ≀ sup(ran 𝑇, ℝ*, < ))
282, 16, 21, 22, 27xrltletrd 13140 . . . 4 (πœ‘ β†’ -∞ < sup(ran 𝑇, ℝ*, < ))
29 xrrebnd 13147 . . . . 5 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3021, 29syl 17 . . . 4 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3128, 30mpbirand 706 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑇, ℝ*, < ) < +∞))
32 nfcv 2904 . . . . . . . . 9 β„²π‘šπ΄
33 nfcsb1v 3919 . . . . . . . . 9 β„²π‘›β¦‹π‘š / π‘›β¦Œπ΄
34 csbeq1a 3908 . . . . . . . . 9 (𝑛 = π‘š β†’ 𝐴 = β¦‹π‘š / π‘›β¦Œπ΄)
3532, 33, 34cbviun 5040 . . . . . . . 8 βˆͺ 𝑛 ∈ β„• 𝐴 = βˆͺ π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄
3635fveq2i 6895 . . . . . . 7 (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) = (vol*β€˜βˆͺ π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄)
37 nfcv 2904 . . . . . . . . . 10 β„²π‘š(vol*β€˜π΄)
38 nfcv 2904 . . . . . . . . . . 11 Ⅎ𝑛vol*
3938, 33nffv 6902 . . . . . . . . . 10 Ⅎ𝑛(vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄)
4034fveq2d 6896 . . . . . . . . . 10 (𝑛 = π‘š β†’ (vol*β€˜π΄) = (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄))
4137, 39, 40cbvmpt 5260 . . . . . . . . 9 (𝑛 ∈ β„• ↦ (vol*β€˜π΄)) = (π‘š ∈ β„• ↦ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄))
426, 41eqtri 2761 . . . . . . . 8 𝐺 = (π‘š ∈ β„• ↦ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄))
43 ovoliun.a . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐴 βŠ† ℝ)
4443ralrimiva 3147 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘› ∈ β„• 𝐴 βŠ† ℝ)
45 nfv 1918 . . . . . . . . . . . 12 β„²π‘š 𝐴 βŠ† ℝ
46 nfcv 2904 . . . . . . . . . . . . 13 Ⅎ𝑛ℝ
4733, 46nfss 3975 . . . . . . . . . . . 12 β„²π‘›β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ
4834sseq1d 4014 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ (𝐴 βŠ† ℝ ↔ β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ))
4945, 47, 48cbvralw 3304 . . . . . . . . . . 11 (βˆ€π‘› ∈ β„• 𝐴 βŠ† ℝ ↔ βˆ€π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
5044, 49sylib 217 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
5150ad2antrr 725 . . . . . . . . 9 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ βˆ€π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
5251r19.21bi 3249 . . . . . . . 8 ((((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ β„•) β†’ β¦‹π‘š / π‘›β¦Œπ΄ βŠ† ℝ)
535ralrimiva 3147 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘› ∈ β„• (vol*β€˜π΄) ∈ ℝ)
5437nfel1 2920 . . . . . . . . . . . 12 β„²π‘š(vol*β€˜π΄) ∈ ℝ
5539nfel1 2920 . . . . . . . . . . . 12 Ⅎ𝑛(vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ
5640eleq1d 2819 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((vol*β€˜π΄) ∈ ℝ ↔ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ))
5754, 55, 56cbvralw 3304 . . . . . . . . . . 11 (βˆ€π‘› ∈ β„• (vol*β€˜π΄) ∈ ℝ ↔ βˆ€π‘š ∈ β„• (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
5853, 57sylib 217 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘š ∈ β„• (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
5958ad2antrr 725 . . . . . . . . 9 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ βˆ€π‘š ∈ β„• (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
6059r19.21bi 3249 . . . . . . . 8 ((((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ β„•) β†’ (vol*β€˜β¦‹π‘š / π‘›β¦Œπ΄) ∈ ℝ)
61 simplr 768 . . . . . . . 8 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
62 simpr 486 . . . . . . . 8 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ+)
6310, 42, 52, 60, 61, 62ovoliunlem3 25021 . . . . . . 7 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ (vol*β€˜βˆͺ π‘š ∈ β„• β¦‹π‘š / π‘›β¦Œπ΄) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯))
6436, 63eqbrtrid 5184 . . . . . 6 (((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ π‘₯ ∈ ℝ+) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯))
6564ralrimiva 3147 . . . . 5 ((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ βˆ€π‘₯ ∈ ℝ+ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯))
66 iunss 5049 . . . . . . . 8 (βˆͺ 𝑛 ∈ β„• 𝐴 βŠ† ℝ ↔ βˆ€π‘› ∈ β„• 𝐴 βŠ† ℝ)
6744, 66sylibr 233 . . . . . . 7 (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• 𝐴 βŠ† ℝ)
68 ovolcl 24995 . . . . . . 7 (βˆͺ 𝑛 ∈ β„• 𝐴 βŠ† ℝ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ*)
6967, 68syl 17 . . . . . 6 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ*)
70 xralrple 13184 . . . . . 6 (((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ* ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ) ↔ βˆ€π‘₯ ∈ ℝ+ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯)))
7169, 70sylan 581 . . . . 5 ((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ) ↔ βˆ€π‘₯ ∈ ℝ+ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ (sup(ran 𝑇, ℝ*, < ) + π‘₯)))
7265, 71mpbird 257 . . . 4 ((πœ‘ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ))
7372ex 414 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) ∈ ℝ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
7431, 73sylbird 260 . 2 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) < +∞ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
75 nltpnft 13143 . . . 4 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* β†’ (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ Β¬ sup(ran 𝑇, ℝ*, < ) < +∞))
7621, 75syl 17 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ Β¬ sup(ran 𝑇, ℝ*, < ) < +∞))
77 pnfge 13110 . . . . 5 ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ∈ ℝ* β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ +∞)
7869, 77syl 17 . . . 4 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ +∞)
79 breq2 5153 . . . 4 (sup(ran 𝑇, ℝ*, < ) = +∞ β†’ ((vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ) ↔ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ +∞))
8078, 79syl5ibrcom 246 . . 3 (πœ‘ β†’ (sup(ran 𝑇, ℝ*, < ) = +∞ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
8176, 80sylbird 260 . 2 (πœ‘ β†’ (Β¬ sup(ran 𝑇, ℝ*, < ) < +∞ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < )))
8274, 81pm2.61d 179 1 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑛 ∈ β„• 𝐴) ≀ sup(ran 𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  β¦‹csb 3894   βŠ† wss 3949  βˆͺ ciun 4998   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  supcsup 9435  β„cr 11109  1c1 11111   + caddc 11113  +∞cpnf 11245  -∞cmnf 11246  β„*cxr 11247   < clt 11248   ≀ cle 11249  β„•cn 12212  β„+crp 12974  seqcseq 13966  vol*covol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-ioo 13328  df-ico 13330  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-ovol 24981
This theorem is referenced by:  ovoliun2  25023  voliunlem2  25068  voliunlem3  25069  ex-ovoliunnfl  36531
  Copyright terms: Public domain W3C validator