MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliun Structured version   Visualization version   GIF version

Theorem ovoliun 24109
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 24089, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
Assertion
Ref Expression
ovoliun (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
Distinct variable group:   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovoliun
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10687 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝜑 → -∞ ∈ ℝ*)
3 nnuz 12269 . . . . . . . . 9 ℕ = (ℤ‘1)
4 1zzd 12001 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 ovoliun.v . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
6 ovoliun.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
75, 6fmptd 6855 . . . . . . . . . 10 (𝜑𝐺:ℕ⟶ℝ)
87ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
93, 4, 8serfre 13395 . . . . . . . 8 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
10 ovoliun.t . . . . . . . . 9 𝑇 = seq1( + , 𝐺)
1110feq1i 6478 . . . . . . . 8 (𝑇:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
129, 11sylibr 237 . . . . . . 7 (𝜑𝑇:ℕ⟶ℝ)
13 1nn 11636 . . . . . . 7 1 ∈ ℕ
14 ffvelrn 6826 . . . . . . 7 ((𝑇:ℕ⟶ℝ ∧ 1 ∈ ℕ) → (𝑇‘1) ∈ ℝ)
1512, 13, 14sylancl 589 . . . . . 6 (𝜑 → (𝑇‘1) ∈ ℝ)
1615rexrd 10680 . . . . 5 (𝜑 → (𝑇‘1) ∈ ℝ*)
1712frnd 6494 . . . . . . 7 (𝜑 → ran 𝑇 ⊆ ℝ)
18 ressxr 10674 . . . . . . 7 ℝ ⊆ ℝ*
1917, 18sstrdi 3927 . . . . . 6 (𝜑 → ran 𝑇 ⊆ ℝ*)
20 supxrcl 12696 . . . . . 6 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2119, 20syl 17 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
2215mnfltd 12507 . . . . 5 (𝜑 → -∞ < (𝑇‘1))
2312ffnd 6488 . . . . . . 7 (𝜑𝑇 Fn ℕ)
24 fnfvelrn 6825 . . . . . . 7 ((𝑇 Fn ℕ ∧ 1 ∈ ℕ) → (𝑇‘1) ∈ ran 𝑇)
2523, 13, 24sylancl 589 . . . . . 6 (𝜑 → (𝑇‘1) ∈ ran 𝑇)
26 supxrub 12705 . . . . . 6 ((ran 𝑇 ⊆ ℝ* ∧ (𝑇‘1) ∈ ran 𝑇) → (𝑇‘1) ≤ sup(ran 𝑇, ℝ*, < ))
2719, 25, 26syl2anc 587 . . . . 5 (𝜑 → (𝑇‘1) ≤ sup(ran 𝑇, ℝ*, < ))
282, 16, 21, 22, 27xrltletrd 12542 . . . 4 (𝜑 → -∞ < sup(ran 𝑇, ℝ*, < ))
29 xrrebnd 12549 . . . . 5 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3021, 29syl 17 . . . 4 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(ran 𝑇, ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) < +∞)))
3128, 30mpbirand 706 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑇, ℝ*, < ) < +∞))
32 nfcv 2955 . . . . . . . . 9 𝑚𝐴
33 nfcsb1v 3852 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴
34 csbeq1a 3842 . . . . . . . . 9 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
3532, 33, 34cbviun 4923 . . . . . . . 8 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
3635fveq2i 6648 . . . . . . 7 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
37 nfcv 2955 . . . . . . . . . 10 𝑚(vol*‘𝐴)
38 nfcv 2955 . . . . . . . . . . 11 𝑛vol*
3938, 33nffv 6655 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
4034fveq2d 6649 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4137, 39, 40cbvmpt 5131 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
426, 41eqtri 2821 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
43 ovoliun.a . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
4443ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
45 nfv 1915 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
46 nfcv 2955 . . . . . . . . . . . . 13 𝑛
4733, 46nfss 3907 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
4834sseq1d 3946 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
4945, 47, 48cbvralw 3387 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5044, 49sylib 221 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5150ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5251r19.21bi 3173 . . . . . . . 8 ((((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
535ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5437nfel1 2971 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5539nfel1 2971 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5640eleq1d 2874 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
5754, 55, 56cbvralw 3387 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5853, 57sylib 221 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
5958ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6059r19.21bi 3173 . . . . . . . 8 ((((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
61 simplr 768 . . . . . . . 8 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
62 simpr 488 . . . . . . . 8 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6310, 42, 52, 60, 61, 62ovoliunlem3 24108 . . . . . . 7 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
6436, 63eqbrtrid 5065 . . . . . 6 (((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
6564ralrimiva 3149 . . . . 5 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥))
66 iunss 4932 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
6744, 66sylibr 237 . . . . . . 7 (𝜑 𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
68 ovolcl 24082 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
6967, 68syl 17 . . . . . 6 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
70 xralrple 12586 . . . . . 6 (((vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥)))
7169, 70sylan 583 . . . . 5 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝑥)))
7265, 71mpbird 260 . . . 4 ((𝜑 ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
7372ex 416 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ∈ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
7431, 73sylbird 263 . 2 (𝜑 → (sup(ran 𝑇, ℝ*, < ) < +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
75 nltpnft 12545 . . . 4 (sup(ran 𝑇, ℝ*, < ) ∈ ℝ* → (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ ¬ sup(ran 𝑇, ℝ*, < ) < +∞))
7621, 75syl 17 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) = +∞ ↔ ¬ sup(ran 𝑇, ℝ*, < ) < +∞))
77 pnfge 12513 . . . . 5 ((vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞)
7869, 77syl 17 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞)
79 breq2 5034 . . . 4 (sup(ran 𝑇, ℝ*, < ) = +∞ → ((vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ +∞))
8078, 79syl5ibrcom 250 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) = +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
8176, 80sylbird 263 . 2 (𝜑 → (¬ sup(ran 𝑇, ℝ*, < ) < +∞ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )))
8274, 81pm2.61d 182 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  csb 3828  wss 3881   ciun 4881   class class class wbr 5030  cmpt 5110  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  supcsup 8888  cr 10525  1c1 10527   + caddc 10529  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cn 11625  +crp 12377  seqcseq 13364  vol*covol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-ovol 24068
This theorem is referenced by:  ovoliun2  24110  voliunlem2  24155  voliunlem3  24156  ex-ovoliunnfl  35100
  Copyright terms: Public domain W3C validator